論文の概要: Quantum Process Learning Through Neural Emulation
- arxiv url: http://arxiv.org/abs/2308.08815v2
- Date: Tue, 5 Dec 2023 15:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 19:44:45.616543
- Title: Quantum Process Learning Through Neural Emulation
- Title(参考訳): 神経エミュレーションによる量子プロセス学習
- Authors: Yan Zhu, Ya-Dong Wu, Qiushi Liu, Yuexuan Wang, Giulio Chiribella
- Abstract要約: 入力アンサンブルの内部表現を構築し,未知の過程をエミュレートするニューラルネットワークを導入する。
我々のモデルは量子コンピューティング、量子フォトニクス、量子多体物理学への応用において高い精度を示す。
- 参考スコア(独自算出の注目度): 3.7228085662092845
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks are a promising tool for characterizing intermediate-scale
quantum devices from limited amounts of measurement data. A challenging problem
in this area is to learn the action of an unknown quantum process on an
ensemble of physically relevant input states. To tackle this problem, we
introduce a neural network that emulates the unknown process by constructing an
internal representation of the input ensemble and by mimicking the action of
the process at the state representation level. After being trained with
measurement data from a few pairs of input/output quantum states, the network
becomes able to predict the measurement statistics for all inputs in the
ensemble of interest. We show that our model exhibits high accuracy in
applications to quantum computing, quantum photonics, and quantum many-body
physics.
- Abstract(参考訳): ニューラルネットワークは、限られた量の測定データから中間規模の量子デバイスを特徴付ける有望なツールである。
この領域における難しい問題は、物理的に関連する入力状態のアンサンブルに対する未知の量子過程の作用を学ぶことである。
そこで本研究では,入力アンサンブルの内部表現を構築し,状態表現レベルでのプロセスの動作を模倣することで未知のプロセスを模倣するニューラルネットワークを提案する。
数組の入力/出力量子状態の測定データをトレーニングした後、ネットワークは関心の集まりにおけるすべての入力の計測統計を予測できるようになる。
我々のモデルは量子コンピューティング、量子フォトニクス、量子多体物理学への応用において高い精度を示す。
関連論文リスト
- Quantum machine learning via continuous-variable cluster states and teleportation [2.473948454680334]
フォトニックプラットフォームに分散量子機械学習とメモリ表示に適した新しいアプローチを提案する。
この測定に基づく量子貯水池計算は、主量子資源として連続的な可変クラスター状態を利用する。
論文 参考訳(メタデータ) (2024-11-11T12:11:16Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
最大70個の超伝導量子ビット上の測定誘起量子情報相について検討した。
二重性マッピングを用いて、中間回路の測定を回避し、基礎となる位相の異なる表現にアクセスする。
我々の研究は、現在のNISQプロセッサの限界であるスケールでの計測誘起物理を実現するためのアプローチを示す。
論文 参考訳(メタデータ) (2023-03-08T18:41:53Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
絡み合いは量子技術の発展における鍵となる性質である。
本稿では,局所ハミルトニアンの平衡状態と非平衡状態の絡み合いを測定するためのニューラルネットワーク支援プロトコルを提案する。
論文 参考訳(メタデータ) (2022-09-18T08:15:49Z) - Flexible learning of quantum states with generative query neural
networks [4.540894342435848]
複数の量子状態にまたがる学習は、生成的クエリニューラルネットワークによって達成できることを示す。
我々のネットワークは、古典的にシミュレートされたデータでオフラインでトレーニングでき、後に未知の量子状態を実際の実験データから特徴づけるのに使うことができる。
論文 参考訳(メタデータ) (2022-02-14T15:48:27Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantifying Unknown Entanglement by Neural Networks [1.6629141734354616]
ニューラルネットワークは未知の絡み合いを定量化するために訓練され、ニューラルネットワークの入力特徴は、ターゲットの量子状態を局所的に測定した結果統計データである。
その結果、トレーニングするニューラルネットワークは、未知の量子状態の定量化に非常に優れた性能を持つことがわかった。
論文 参考訳(メタデータ) (2021-04-26T12:50:25Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。