論文の概要: A White-Box False Positive Adversarial Attack Method on Contrastive
Loss-Based Offline Handwritten Signature Verification Models
- arxiv url: http://arxiv.org/abs/2308.08925v1
- Date: Thu, 17 Aug 2023 11:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 16:54:07.033609
- Title: A White-Box False Positive Adversarial Attack Method on Contrastive
Loss-Based Offline Handwritten Signature Verification Models
- Title(参考訳): 対照損失に基づくオフライン手書き署名検証モデルにおけるホワイトボックス偽正逆攻撃法
- Authors: Zhongliang Guo, Yifei Qian, Ognjen Arandjelovi\'c, Lei Fang
- Abstract要約: 我々は, 競合的損失に基づくオフライン手書き署名検証モデルに対する, 偽正逆攻撃の難しさに対処する。
そこで本研究では,この攻撃を,密接に関連するが異なる書体間のスタイル転送として扱う新たな攻撃手法を提案する。
提案手法は,ホワイトボックス攻撃によるオフライン手書き署名検証モデルに対する最先端性能を示す。
- 参考スコア(独自算出の注目度): 11.464022563445461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the challenge of white-box false positive
adversarial attacks on contrastive loss-based offline handwritten signature
verification models. We propose a novel attack method that treats the attack as
a style transfer between closely related but distinct writing styles. To guide
the generation of deceptive images, we introduce two new loss functions that
enhance the attack success rate by perturbing the Euclidean distance between
the embedding vectors of the original and synthesized samples, while ensuring
minimal perturbations by reducing the difference between the generated image
and the original image. Our method demonstrates state-of-the-art performance in
white-box attacks on contrastive loss-based offline handwritten signature
verification models, as evidenced by our experiments. The key contributions of
this paper include a novel false positive attack method, two new loss
functions, effective style transfer in handwriting styles, and superior
performance in white-box false positive attacks compared to other white-box
attack methods.
- Abstract(参考訳): 本稿では, 競合的損失に基づくオフライン手書き署名検証モデルに対して, 白箱偽正逆攻撃の課題に取り組む。
本稿では,この攻撃を,密接に関連するが異なる文体間のスタイル伝達として扱う新しい攻撃手法を提案する。
そこで本研究では,原画像と合成画像の埋め込みベクトル間のユークリッド距離を摂動させ,生成画像と原画像との差を小さくすることで最小限の摂動を確保することにより,攻撃成功率を高める2つの新たな損失関数を導入する。
提案手法は,白箱攻撃による逆損失に基づくオフライン手書き署名検証モデルに対する最先端性能を示す。
本稿では,新しい偽陽性攻撃法,新たな2つの損失関数,筆跡スタイルにおける効果的なスタイル転送,ホワイトボックス偽陽性攻撃において他のホワイトボックス攻撃法と比較して優れた性能を示す。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
多様なNLPタスクの基本モデルにおいて,ラベルの平滑化戦略によって提供される対角的ロバスト性について検討する。
実験の結果,ラベルのスムース化は,BERTなどの事前学習モデルにおいて,様々な攻撃に対して,逆方向の堅牢性を大幅に向上させることがわかった。
また,予測信頼度とロバスト性の関係を解析し,ラベルの平滑化が敵の例に対する過度な信頼誤差を減少させることを示した。
論文 参考訳(メタデータ) (2022-12-20T14:06:50Z) - Pixle: a fast and effective black-box attack based on rearranging pixels [15.705568893476947]
ブラックボックスの敵攻撃は攻撃モデルの内部構造を知ることなく行うことができる。
本稿では,攻撃画像内に少数の画素を並べ替えることで,高い割合のサンプルを正しく攻撃できる新たな攻撃法を提案する。
我々の攻撃は、多数のデータセットやモデルに作用し、少数の反復が必要であり、元のサンプルと逆のサンプルの間の距離が人間の目では無視可能であることを実証する。
論文 参考訳(メタデータ) (2022-02-04T17:03:32Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
ブラックボックスの敵攻撃は、あるモデルから別のモデルに転送することができる。
本研究では,分散縮小アンサンブル攻撃と呼ばれる新しいアンサンブル攻撃法を提案する。
実験結果から,提案手法は既存のアンサンブル攻撃を著しく上回り,対向移動性を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T06:33:27Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Gradient-based Adversarial Attacks against Text Transformers [96.73493433809419]
トランスモデルに対する初の汎用勾配攻撃を提案する。
我々は、ホワイトボックス攻撃が様々な自然言語タスクにおいて最先端の攻撃性能を達成することを実証的に実証する。
論文 参考訳(メタデータ) (2021-04-15T17:43:43Z) - Random Transformation of Image Brightness for Adversarial Attack [5.405413975396116]
逆の例は、オリジナルの画像に小さな人間の知覚できないものを加えることで作られる。
ディープニューラルネットワークは、オリジナルの画像に小さな人間の知覚できないものを加えることで構築される敵の例に対して脆弱である。
本稿では,高速勾配符号法と統合可能な,この現象に基づく逆例生成手法を提案する。
本手法は,データ拡張に基づく他の攻撃方法よりもブラックボックス攻撃の成功率が高い。
論文 参考訳(メタデータ) (2021-01-12T07:00:04Z) - Decision-based Universal Adversarial Attack [55.76371274622313]
ブラックボックス設定では、現在の普遍的敵攻撃法は代用モデルを用いて摂動を生成する。
効率的な決定に基づくユニバーサルアタック(DUAttack)を提案する。
DUAttackの有効性は、他の最先端攻撃との比較によって検証される。
論文 参考訳(メタデータ) (2020-09-15T12:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。