Semantic Information for Object Detection
- URL: http://arxiv.org/abs/2308.08990v1
- Date: Thu, 17 Aug 2023 13:53:29 GMT
- Title: Semantic Information for Object Detection
- Authors: Jean-Francois Nies
- Abstract summary: We introduce a novel method for extracting a knowledge graph from a dataset of images provided with instance-level annotations.
We investigate the effectiveness of knowledge-aware re-optimization on the Faster-RCNN and DETR object detection models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we demonstrate that the concept of Semantic Consistency and
the ensuing method of Knowledge-Aware Re-Optimization can be adapted for the
problem of object detection in intricate traffic scenes. Furthermore, we
introduce a novel method for extracting a knowledge graph from a dataset of
images provided with instance-level annotations, and integrate this new
knowledge graph with the existing semantic consistency model. Combining both
this novel hybrid knowledge graph and the preexisting methods of frequency
analysis and external knowledge graph as sources for semantic information, we
investigate the effectiveness of knowledge-aware re-optimization on the
Faster-RCNN and DETR object detection models. We find that limited but
consistent improvements in precision and or recall can be achieved using this
method for all combinations of model and method studied.
Related papers
- Sample-Efficient Learning of Novel Visual Concepts [7.398195748292981]
State-of-the-art deep learning models struggle to recognize novel objects in a few-shot setting.
We show that incorporating a symbolic knowledge graph into a state-of-the-art recognition model enables a new approach for effective few-shot classification.
arXiv Detail & Related papers (2023-06-15T20:24:30Z) - Detecting Objects with Context-Likelihood Graphs and Graph Refinement [45.70356990655389]
The goal of this paper is to detect objects by exploiting their ins. Contrary to existing methods, which learn objects and relations separately, our key idea is to learn the object-relation distribution jointly.
We propose a novel way of creating a graphical representation of an image from inter-object relations and initial class predictions, we call a context-likelihood graph.
We then learn the joint with an energy-based modeling technique which allows a sample and refine the context-likelihood graph iteratively for a given image.
arXiv Detail & Related papers (2022-12-23T15:27:21Z) - Learning Graph Regularisation for Guided Super-Resolution [77.7568596501908]
We introduce a novel formulation for guided super-resolution.
Its core is a differentiable optimisation layer that operates on a learned affinity graph.
We extensively evaluate our method on several datasets, and consistently outperform recent baselines in terms of quantitative reconstruction errors.
arXiv Detail & Related papers (2022-03-27T13:12:18Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data.
We optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis.
Our method performs competitively on seven public graph datasets.
arXiv Detail & Related papers (2021-06-23T15:55:47Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
We propose a new two-level joint idea to augment the generative network with an inference network during training.
This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains.
We evaluate our approach on four benchmark datasets against several state-of-the-art methods, and show its performance.
arXiv Detail & Related papers (2020-07-15T15:34:09Z) - Dynamic Knowledge embedding and tracing [18.717482292051788]
We propose a novel approach to knowledge tracing that combines techniques from matrix factorization with recent progress in recurrent neural networks (RNNs)
The proposed emphDynEmb framework enables the tracking of student knowledge even without the concept/skill tag information.
arXiv Detail & Related papers (2020-05-18T21:56:42Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.