論文の概要: Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors
- arxiv url: http://arxiv.org/abs/2308.09013v2
- Date: Tue, 15 Apr 2025 13:05:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 08:33:08.003048
- Title: Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors
- Title(参考訳): ウェアラブル型生理センサを用いた感情認識のための深海クラスタリング
- Authors: Marta A. Conceição, Antoine Dubois, Sonja Haustein, Bruno Miranda, Carlos Lima Azevedo,
- Abstract要約: 本稿では,生理的信号から特徴を最小限に抽出し,分類するディープシードクラスタリングアルゴリズムを提案する。
本モデルは,感情コンピューティング研究で頻繁に使用される3つのデータセットに対して,良好な性能が得られることを示す。
- 参考スコア(独自算出の注目度): 1.380698851850167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the circumplex model of affect, an emotional response could characterized by a level of pleasure (valence) and intensity (arousal). As it reflects on the autonomic nervous system (ANS) activity, modern wearable wristbands can record non-invasively and during our everyday lives peripheral end-points of this response. While emotion recognition from physiological signals is usually achieved using supervised machine learning algorithms that require ground truth labels for training, collecting it is cumbersome and particularly unfeasible in naturalistic settings, and extracting meaningful insights from these signals requires domain knowledge and might be prone to bias. Here, we propose and test a deep-seeded clustering algorithm that automatically extracts and classifies features from those physiological signals with minimal supervision - combining an autoencoder (AE) for unsupervised feature representation and c-means clustering for fine-grained classification. We also show that the model obtains good performance results across three different datasets frequently used in affective computing studies (accuracies of 80.7% on WESAD, 64.2% on Stress-Predict and 61.0% on CEAP360-VR).
- Abstract(参考訳): 情動の円周モデルによれば、感情的な反応は喜び(価)と強さ(覚醒)のレベルによって特徴づけられる。
自律神経系(ANS)の活動に反映して、現代のウェアラブルリストバンドは非侵襲的に記録することができ、私たちの日常生活の中でこの反応の周辺端点を記録できる。
生理的信号からの感情認識は通常、訓練のために地上の真理ラベルを必要とする教師付き機械学習アルゴリズムを用いて達成されるが、自然主義的な設定では扱いにくい、特に不可能であり、これらの信号から有意義な洞察を抽出するにはドメイン知識が必要であり、偏見がちである。
そこで本研究では,非教師付き特徴表現のためのオートエンコーダ(AE)ときめ細かい分類のためのc-meansクラスタリングを組み合わせた,生理的信号から特徴を自動的に抽出し,分類するディープシードクラスタリングアルゴリズムを提案する。
また、このモデルでは、感情コンピューティング研究で頻繁に使用される3つの異なるデータセット(WASADでは80.7%、ストレス予測では64.2%、CEAP360-VRでは61.0%)に対して、優れた結果が得られることを示した。
関連論文リスト
- Passive Measurement of Autonomic Arousal in Real-World Settings [17.490383024379053]
自律神経系(ANS)はストレス中に活性化される。
ANS活性は、心臓血管の健康、睡眠、免疫系、精神健康に悪影響を及ぼす可能性がある。
本稿では,広帯域の遠隔手首型センサによるANS活性化の連続的リモート計測手法を提案する。
論文 参考訳(メタデータ) (2025-04-30T00:45:13Z) - Complex Emotion Recognition System using basic emotions via Facial Expression, EEG, and ECG Signals: a review [1.8310098790941458]
複雑な感情認識システム(CERS)は、表現された基本的な感情、それらの相互関係、そして動的変動の組合せを調べることによって、複雑な感情状態を解読する。
複雑な感情を識別するAIシステムの開発は、感情的コンピューティングに重要な意味を持つ重要な課題となっている。
心電図(ECG)や脳電図(EEG)などの生理的シグナルを取り入れることで、CERSを顕著に増強することができる。
論文 参考訳(メタデータ) (2024-09-09T05:06:10Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
不安やストレスと高覚醒感情との関連が示された生理的特徴の一般化可能性を評価する。
この研究は、心電図やEDA信号からストレスと覚醒を横断する最初のクロスコーパス評価であり、ストレス検出の一般化性に関する新たな発見に寄与した。
論文 参考訳(メタデータ) (2024-01-23T16:49:54Z) - Emotion recognition based on multi-modal electrophysiology multi-head
attention Contrastive Learning [3.2536246345549538]
自己教師型コントラスト学習に基づくマルチモーダル感情認識手法ME-MHACLを提案する。
訓練された特徴抽出器をラベル付き電気生理学的信号に適用し、特徴融合に多頭部注意機構を用いる。
本手法は,感情認識タスクにおける既存のベンチマーク手法よりも優れ,個人間一般化能力に優れていた。
論文 参考訳(メタデータ) (2023-07-12T05:55:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
本研究は, 自己申告されたストレスアノテーションを用いた実験室で記録された生理的データを用いて, ストレスを検出するためのいくつかのアプローチを実験的に評価する。
最適応力検出法は90.77%の分類精度、91.24 F1-サブミッション、90.42感度、91.08特異性を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:57:14Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
本稿では, 対人学習を利用して, 異なる偽造法と顔の同一性による負の効果を除去する手法を提案する。
我々の顔偽造検出モデルは、偽造法や顔の同一性の影響を排除し、共通の識別的特徴を抽出することを学ぶ。
論文 参考訳(メタデータ) (2022-07-08T09:23:59Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Deep Convolution Network Based Emotion Analysis for Automatic Detection
of Mild Cognitive Impairment in the Elderly [15.217754542927961]
認知障害の早期発見は、患者と介護者の両方にとって非常に重要である。
認知障害患者には異常な感情パターンが認められた。
本稿では,認知障害を検出するための新しい深層畳み込みネットワークシステムを提案する。
論文 参考訳(メタデータ) (2021-11-09T11:51:33Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Contrastive Learning of Subject-Invariant EEG Representations for
Cross-Subject Emotion Recognition [9.07006689672858]
本稿では、信頼度の高いクロスオブジェクト感情認識のためのISAのためのコントラスト学習法を提案する。
ISAは、異なる刺激に対して同じ刺激を受けた被験者間での脳波信号の類似性を最大化する。
脳波信号から物体間表現を学習するために,深部空間畳み込み層と時間畳み込み層を有する畳み込みニューラルネットワークを適用した。
論文 参考訳(メタデータ) (2021-09-20T14:13:45Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
意味ラベルのない活動・心拍(HR)信号を用いた新しい自己教師型表現学習法を提案する。
その結果, 線形分類器を用いた伝達学習により, 様々な下流タスクにおいて, 埋め込みが一般化できることが示唆された。
本研究は,大規模健康・ライフスタイルモニタリングに寄与する行動・生理的データに対する,最初のマルチモーダル自己管理手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T17:56:03Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。