Semi-sparsity Priors for Image Structure Analysis and Extraction
- URL: http://arxiv.org/abs/2308.09141v1
- Date: Thu, 17 Aug 2023 18:22:00 GMT
- Title: Semi-sparsity Priors for Image Structure Analysis and Extraction
- Authors: Junqing Huang, Haihui Wang, Michael Ruzhansky
- Abstract summary: We propose a semi-sparse regularization framework for image structural analysis and extraction.
We show that it is capable of preserving image structures without introducing notorious staircase artifacts.
We also introduce an efficient numerical solution based on an direction method of multipliers (ADMM) algorithm.
- Score: 3.130722489512822
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image structure-texture decomposition is a long-standing and fundamental
problem in both image processing and computer vision fields. In this paper, we
propose a generalized semi-sparse regularization framework for image structural
analysis and extraction, which allows us to decouple the underlying image
structures from complicated textural backgrounds. Combining with different
textural analysis models, such a regularization receives favorable properties
differing from many traditional methods. We demonstrate that it is not only
capable of preserving image structures without introducing notorious staircase
artifacts in polynomial-smoothing surfaces but is also applicable for
decomposing image textures with strong oscillatory patterns. Moreover, we also
introduce an efficient numerical solution based on an alternating direction
method of multipliers (ADMM) algorithm, which gives rise to a simple and
maneuverable way for image structure-texture decomposition. The versatility of
the proposed method is finally verified by a series of experimental results
with the capability of producing comparable or superior image decomposition
results against cutting-edge methods.
Related papers
- Parameter-free structure-texture image decomposition by unrolling [0.8999666725996975]
We present a neural network LPR-NET based on the unrolling of the Low Patch Rank model.
Despite being trained on synthetic images, numerical experiments show the ability of our network to generalize well when applied to natural images.
arXiv Detail & Related papers (2025-03-17T16:35:04Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Pyramid Texture Filtering [86.15126028139736]
We present a simple but effective technique to smooth out textures while preserving the prominent structures.
Our method is built upon a key observation -- the coarsest level in a Gaussian pyramid often naturally eliminates textures and summarizes the main image structures.
We show that our approach is effective to separate structure from texture of different scales, local contrasts, and forms, without degrading structures or introducing visual artifacts.
arXiv Detail & Related papers (2023-05-11T02:05:30Z) - Unsupervised Multimodal Change Detection Based on Structural
Relationship Graph Representation Learning [40.631724905575034]
Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications.
We take advantage of two types of modality-independent structural relationships in multimodal images.
We present a structural relationship graph representation learning framework for measuring the similarity of the two structural relationships.
arXiv Detail & Related papers (2022-10-03T13:55:08Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - An Optical physics inspired CNN approach for intrinsic image
decomposition [0.0]
Intrinsic Image Decomposition is an open problem of generating the constituents of an image.
We propose a neural network architecture capable of this decomposition using physics-based parameters derived from the image.
arXiv Detail & Related papers (2021-05-21T00:54:01Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Generating Diverse Structure for Image Inpainting With Hierarchical
VQ-VAE [74.29384873537587]
We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture.
Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images.
arXiv Detail & Related papers (2021-03-18T05:10:49Z) - Image Inpainting Guided by Coherence Priors of Semantics and Textures [62.92586889409379]
We introduce coherence priors between the semantics and textures which make it possible to concentrate on completing separate textures in a semantic-wise manner.
We also propose two coherence losses to constrain the consistency between the semantics and the inpainted image in terms of the overall structure and detailed textures.
arXiv Detail & Related papers (2020-12-15T02:59:37Z) - Region-adaptive Texture Enhancement for Detailed Person Image Synthesis [86.69934638569815]
RATE-Net is a novel framework for synthesizing person images with sharp texture details.
The proposed framework leverages an additional texture enhancing module to extract appearance information from the source image.
Experiments conducted on DeepFashion benchmark dataset have demonstrated the superiority of our framework compared with existing networks.
arXiv Detail & Related papers (2020-05-26T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.