How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers?
- URL: http://arxiv.org/abs/2308.09180v1
- Date: Thu, 17 Aug 2023 20:40:30 GMT
- Title: How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers?
- Authors: Gregory Holste, Ziyu Jiang, Ajay Jaiswal, Maria Hanna, Shlomo
Minkowitz, Alan C. Legasto, Joanna G. Escalon, Sharon Steinberger, Mark
Bittman, Thomas C. Shen, Ying Ding, Ronald M. Summers, George Shih, Yifan
Peng, and Zhangyang Wang
- Abstract summary: Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
- Score: 49.35105290167996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pruning has emerged as a powerful technique for compressing deep neural
networks, reducing memory usage and inference time without significantly
affecting overall performance. However, the nuanced ways in which pruning
impacts model behavior are not well understood, particularly for long-tailed,
multi-label datasets commonly found in clinical settings. This knowledge gap
could have dangerous implications when deploying a pruned model for diagnosis,
where unexpected model behavior could impact patient well-being. To fill this
gap, we perform the first analysis of pruning's effect on neural networks
trained to diagnose thorax diseases from chest X-rays (CXRs). On two large CXR
datasets, we examine which diseases are most affected by pruning and
characterize class "forgettability" based on disease frequency and
co-occurrence behavior. Further, we identify individual CXRs where uncompressed
and heavily pruned models disagree, known as pruning-identified exemplars
(PIEs), and conduct a human reader study to evaluate their unifying qualities.
We find that radiologists perceive PIEs as having more label noise, lower image
quality, and higher diagnosis difficulty. This work represents a first step
toward understanding the impact of pruning on model behavior in deep
long-tailed, multi-label medical image classification. All code, model weights,
and data access instructions can be found at
https://github.com/VITA-Group/PruneCXR.
Related papers
- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
We introduce our CROCODILE framework, showing how tools from causality can foster a model's robustness to domain shift.
We apply our method to multi-label lung disease classification from CXRs, utilizing over 750000 images.
arXiv Detail & Related papers (2024-08-09T09:08:06Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - Anatomy-Guided Weakly-Supervised Abnormality Localization in Chest
X-rays [17.15666977702355]
We propose an Anatomy-Guided chest X-ray Network (AGXNet) to address weak annotation issues.
Our framework consists of a cascade of two networks, one responsible for identifying anatomical abnormalities and the second responsible for pathological observations.
Our results on the MIMIC-CXR dataset demonstrate the effectiveness of AGXNet in disease and anatomical abnormality localization.
arXiv Detail & Related papers (2022-06-25T18:33:27Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
We propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia.
The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data.
arXiv Detail & Related papers (2021-05-20T13:13:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for
Identifying COVID-19 on Chest X-rays [4.566180616886624]
We introduce a graph based deep semi-supervised framework for classifying COVID-19 from chest X-rays.
Our framework introduces an optimisation model for graph diffusion that reinforces the natural relation among the tiny labelled set and the vast unlabelled data.
We demonstrate, through our experiments, that our model is able to outperform the current leading supervised model with a tiny fraction of the labelled examples.
arXiv Detail & Related papers (2020-09-30T15:38:24Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.