An analysis of data variation and bias in image-based dermatological datasets for machine learning classification
- URL: http://arxiv.org/abs/2501.08962v2
- Date: Tue, 11 Feb 2025 13:55:01 GMT
- Title: An analysis of data variation and bias in image-based dermatological datasets for machine learning classification
- Authors: Francisco Filho, Emanoel Santos, Rodrigo Mota, Kelvin Cunha, Fabio Papais, Amanda Arruda, Mateus Baltazar, Camila Vieira, José Gabriel Tavares, Rafael Barros, Othon Souza, Thales Bezerra, Natalia Lopes, Érico Moutinho, Jéssica Guido, Shirley Cruz, Paulo Borba, Tsang Ing Ren,
- Abstract summary: In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input.
Most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard.
This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training.
- Score: 2.039829968340841
- License:
- Abstract: AI algorithms have become valuable in aiding professionals in healthcare. The increasing confidence obtained by these models is helpful in critical decision demands. In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input. However, most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard. Clinical models aim to deal with classification on users' smartphone cameras that do not contain the corresponding resolution provided by dermoscopy. Also, clinical applications bring new challenges. It can contain captures from uncontrolled environments, skin tone variations, viewpoint changes, noises in data and labels, and unbalanced classes. A possible alternative would be to use transfer learning to deal with the clinical images. However, as the number of samples is low, it can cause degradations on the model's performance; the source distribution used in training differs from the test set. This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training. It assesses the main differences between distributions that disturb the model's prediction. Finally, from experiments on different architectures, we argue how to combine the data from divergent distributions, decreasing the impact on the model's final accuracy.
Related papers
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
Training a deep learning model requires a considerable amount of labeled images.
A number of publicly available datasets have been built with data from different hospitals and clinics.
The use of the semi-supervised deep learning approach known as MixMatch, to leverage the usage of unlabeled data is proposed and evaluated.
arXiv Detail & Related papers (2021-07-24T22:26:50Z) - Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion
Classification [5.642359877598896]
This paper proposes a novel data augmentation strategy for single model classification of skin lesions based on a small and imbalanced dataset.
Various DCNNs are trained on this dataset to show that the models with moderate complexity outperform the larger models.
By combining Modified RandAugment and Multi-weighted Focal Loss in a single DCNN model, we have achieved the classification accuracy comparable to those of multiple ensembling models on the ISIC 2018 challenge test dataset.
arXiv Detail & Related papers (2021-02-02T03:48:55Z) - Analysis of skin lesion images with deep learning [0.0]
We evaluate the current state of the art in the classification of dermoscopic images.
Various deep neural network architectures pre-trained on the ImageNet data set are adapted to a combined training data set.
The performance and applicability of these models for the detection of eight classes of skin lesions are examined.
arXiv Detail & Related papers (2021-01-11T10:58:36Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Analysing Risk of Coronary Heart Disease through Discriminative Neural
Networks [18.124078832445967]
In critical applications like diagnostics, this class imbalance cannot be overlooked.
We depict how we can handle this class imbalance through neural networks using a discriminative model and contrastive loss.
arXiv Detail & Related papers (2020-06-17T06:30:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.