Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2402.03972v1
- Date: Tue, 6 Feb 2024 13:02:00 GMT
- Title: Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning
- Authors: Maxime Toquebiau, Nicolas Bredeche, Fa\"iz Benamar, Jae-Yun Jun
- Abstract summary: We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent deep reinforcement learning (MADRL) problems often encounter the
challenge of sparse rewards. This challenge becomes even more pronounced when
coordination among agents is necessary. As performance depends not only on one
agent's behavior but rather on the joint behavior of multiple agents, finding
an adequate solution becomes significantly harder. In this context, a group of
agents can benefit from actively exploring different joint strategies in order
to determine the most efficient one. In this paper, we propose an approach for
rewarding strategies where agents collectively exhibit novel behaviors. We
present JIM (Joint Intrinsic Motivation), a multi-agent intrinsic motivation
method that follows the centralized learning with decentralized execution
paradigm. JIM rewards joint trajectories based on a centralized measure of
novelty designed to function in continuous environments. We demonstrate the
strengths of this approach both in a synthetic environment designed to reveal
shortcomings of state-of-the-art MADRL methods, and in simulated robotic tasks.
Results show that joint exploration is crucial for solving tasks where the
optimal strategy requires a high level of coordination.
Related papers
- Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Cooperative Reward Shaping for Multi-Agent Pathfinding [4.244426154524592]
The primary objective of Multi-Agent Pathfinding (MAPF) is to plan efficient and conflict-free paths for all agents.
Traditional multi-agent path planning algorithms struggle to achieve efficient distributed path planning for multiple agents.
This letter introduces a unique reward shaping technique based on Independent Q-Learning (IQL)
arXiv Detail & Related papers (2024-07-15T02:44:41Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
We propose cooperative multi-agent exploration (CMAE) for deep reinforcement learning.
The goal is selected from multiple projected state spaces via a normalized entropy-based technique.
We demonstrate that CMAE consistently outperforms baselines on various tasks.
arXiv Detail & Related papers (2021-07-23T20:06:32Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
We present the most common multiagent problem representations and their main challenges.
We identify five research areas that address one or more of these challenges.
We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach.
arXiv Detail & Related papers (2021-06-29T19:53:15Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
We investigate a novel approach to decentralized multi-agent learning and planning.
In particular, this method is inspired by the cohesion, coordination, and behavior of ant colonies.
The approach combines single-agent RL and an ant-colony-inspired decentralized, stigmergic algorithm for multi-agent path planning and environment modification.
arXiv Detail & Related papers (2021-05-08T01:04:51Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.