論文の概要: Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation
- arxiv url: http://arxiv.org/abs/2308.09238v2
- Date: Mon, 26 Feb 2024 08:54:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 19:29:34.634660
- Title: Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation
- Title(参考訳): ムッセルファーム自動化のためのディープトランスファー学習によるブイ検出の改善
- Authors: Carl McMillan, Junhong Zhao, Bing Xue, Ross Vennell, Mengjie Zhang
- Abstract要約: ニュージーランドの養殖業は急速に拡大しており、特に貝類の輸出に重点を置いている。
ムッセル農業活動の需要が発展を続けるにつれ、人工知能とコンピュータビジョン技術の統合が、運用効率を高める効果的なアプローチとして現れつつある。
本研究は, 深層学習手法を活用して, ブイ検出の高度化を図っている。
- 参考スコア(独自算出の注目度): 7.906113472259946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aquaculture sector in New Zealand is experiencing rapid expansion, with a
particular emphasis on mussel exports. As the demands of mussel farming
operations continue to evolve, the integration of artificial intelligence and
computer vision techniques, such as intelligent object detection, is emerging
as an effective approach to enhance operational efficiency. This study delves
into advancing buoy detection by leveraging deep learning methodologies for
intelligent mussel farm monitoring and management. The primary objective
centers on improving accuracy and robustness in detecting buoys across a
spectrum of real-world scenarios. A diverse dataset sourced from mussel farms
is captured and labeled for training, encompassing imagery taken from cameras
mounted on both floating platforms and traversing vessels, capturing various
lighting and weather conditions. To establish an effective deep learning model
for buoy detection with a limited number of labeled data, we employ transfer
learning techniques. This involves adapting a pre-trained object detection
model to create a specialized deep learning buoy detection model. We explore
different pre-trained models, including YOLO and its variants, alongside data
diversity to investigate their effects on model performance. Our investigation
demonstrates a significant enhancement in buoy detection performance through
deep learning, accompanied by improved generalization across diverse weather
conditions, highlighting the practical effectiveness of our approach.
- Abstract(参考訳): ニュージーランドの養殖業は急速に拡大しており、特に貝類の輸出に重点を置いている。
ムッセル農作業の需要が拡大するにつれて、人工知能とインテリジェントオブジェクト検出などのコンピュータビジョン技術の統合が、運用効率を高める効果的なアプローチとして現れつつある。
本研究では,知的なムッセル農場のモニタリングと管理に深層学習手法を活用し,ブイ検出の高度化に資する。
主な目的は、実世界の様々なシナリオにおけるブイの検出における精度と堅牢性の向上である。
mussel farmsから派生したさまざまなデータセットをキャプチャし、トレーニング用にラベル付けし、フローティングプラットフォームと船を横断するカメラから撮影した画像を包み込み、さまざまな照明や気象条件をキャプチャする。
ラベル付きデータに制限のあるブイ検出のための効果的な深層学習モデルを確立するために,転送学習技術を用いる。
これには、事前訓練されたオブジェクト検出モデルを適用して、特殊なディープラーニングブイ検出モデルを作成する。
我々は、YOLOとその変種を含む様々な事前学習モデルとデータ多様性について検討し、モデル性能への影響について検討する。
本研究は, 深層学習によるブイ検出性能の顕著な向上を実証し, 各種気象条件の一般化を図り, 本手法の実用性を強調した。
関連論文リスト
- LEAP:D - A Novel Prompt-based Approach for Domain-Generalized Aerial Object Detection [2.1233286062376497]
学習可能なプロンプトを用いた革新的な視覚言語アプローチを提案する。
この手動プロンプトからのシフトは、ドメイン固有の知識干渉を減らすことを目的としている。
トレーニングプロセスを一段階のアプローチで合理化し、学習可能なプロンプトとモデルトレーニングを同時に更新する。
論文 参考訳(メタデータ) (2024-11-14T04:39:10Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Diffusion Augmented Agents: A Framework for Efficient Exploration and Transfer Learning [6.06616040517684]
DAAGは、拡散モデルを使って動画を変換することで、エージェントの過去の経験を再ラベルする。
大規模言語モデルは、人間の監督を必要とせずに、この自律的なプロセスを編成する。
その結果、DAAGは報酬検知器の学習を改善し、過去の経験を移譲し、新しいタスクを取得する。
論文 参考訳(メタデータ) (2024-07-30T13:01:31Z) - Pose Estimation from Camera Images for Underwater Inspection [0.0]
ビジュアルローカライゼーションは慣性ナビゲーションシステムに代わる費用対効果がある。
画像からの機械学習によるポーズ推定は,水中環境において有望であることを示す。
我々は、新しいビュー合成モデルを用いて、探索されていない地域でのポーズ推定を大幅に強化し、強化されたトレーニングデータを生成する。
論文 参考訳(メタデータ) (2024-07-24T03:00:53Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
自己教師型マルチタスク学習フレームワークを再考し、元の手法にいくつかのアップデートを提案する。
マルチヘッド・セルフアテンション・モジュールを導入することで3次元畳み込みバックボーンを近代化する。
モデルをさらに改良するために,セグメントマップの予測などの自己指導型学習タスクについて検討した。
論文 参考訳(メタデータ) (2022-07-16T19:25:41Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
本稿では,2つの知覚強調モデルを提案する。
トレーニングデータの欠如により, 物理的先行とデータ駆動的手がかりを融合したハイブリッド水中画像合成モデルが提案され, トレーニングデータを合成する。
実験結果から,提案手法は実環境および合成水中データセット上でのいくつかの最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-08-21T22:11:34Z) - Building Robust Industrial Applicable Object Detection Models Using
Transfer Learning and Single Pass Deep Learning Architectures [1.1816942730023883]
我々は、オブジェクト検出のタスク専用の深層畳み込みニューラルネットワークが、産業指向のオブジェクト検出パイプラインをどのように改善するかを探求する。
地域提案や分類,確率推定をひとつの実行で統合したディープラーニングアーキテクチャを用いて,リアルタイムのパフォーマンス向上を目指す。
本稿では,これらのアルゴリズムを2つの産業関連アプリケーションに適用し,その1つはアイトラッキングデータにおけるプロモーションボードの検出と,もう1つは拡張現実広告のための倉庫製品のパッケージの検出と認識である。
論文 参考訳(メタデータ) (2020-07-09T09:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。