Accelerated materials language processing enabled by GPT
- URL: http://arxiv.org/abs/2308.09354v1
- Date: Fri, 18 Aug 2023 07:31:13 GMT
- Title: Accelerated materials language processing enabled by GPT
- Authors: Jaewoong Choi, Byungju Lee
- Abstract summary: We develop generative transformer (GPT)-enabled pipelines for materials language processing.
First, we develop a GPT-enabled document classification method for screening relevant documents.
Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance.
Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations.
- Score: 5.518792725397679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Materials language processing (MLP) is one of the key facilitators of
materials science research, as it enables the extraction of structured
information from massive materials science literature. Prior works suggested
high-performance MLP models for text classification, named entity recognition
(NER), and extractive question answering (QA), which require complex model
architecture, exhaustive fine-tuning and a large number of human-labelled
datasets. In this study, we develop generative pretrained transformer
(GPT)-enabled pipelines where the complex architectures of prior MLP models are
replaced with strategic designs of prompt engineering. First, we develop a
GPT-enabled document classification method for screening relevant documents,
achieving comparable accuracy and reliability compared to prior models, with
only small dataset. Secondly, for NER task, we design an entity-centric
prompts, and learning few-shot of them improved the performance on most of
entities in three open datasets. Finally, we develop an GPT-enabled extractive
QA model, which provides improved performance and shows the possibility of
automatically correcting annotations. While our findings confirm the potential
of GPT-enabled MLP models as well as their value in terms of reliability and
practicability, our scientific methods and systematic approach are applicable
to any materials science domain to accelerate the information extraction of
scientific literature.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Aggregated Knowledge Model: Enhancing Domain-Specific QA with Fine-Tuned and Retrieval-Augmented Generation Models [0.0]
This paper introduces a novel approach to enhancing closed-domain Question Answering (QA) systems.
It focuses on the specific needs of the Lawrence Berkeley National Laboratory (LBL) Science Information Technology (ScienceIT) domain.
arXiv Detail & Related papers (2024-10-24T00:49:46Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Enriched BERT Embeddings for Scholarly Publication Classification [0.13654846342364302]
The NSLP 2024 FoRC Task I addresses this challenge organized as a competition.
The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.
arXiv Detail & Related papers (2024-05-07T09:05:20Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Mining experimental data from Materials Science literature with Large Language Models: an evaluation study [1.9849264945671101]
This study is dedicated to assessing the capabilities of large language models (LLMs) in extracting structured information from scientific documents in materials science.
We focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities.
The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches (baseline)
arXiv Detail & Related papers (2024-01-19T23:00:31Z) - GPT Struct Me: Probing GPT Models on Narrative Entity Extraction [2.049592435988883]
We evaluate the capabilities of two state-of-the-art language models -- GPT-3 and GPT-3.5 -- in the extraction of narrative entities.
This study is conducted on the Text2Story Lusa dataset, a collection of 119 Portuguese news articles.
arXiv Detail & Related papers (2023-11-24T16:19:04Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
This work presents a systematic literature review of state-of-the-art advances using transformer-based methods on electronic medical records (EMRs) in different NLP tasks.
arXiv Detail & Related papers (2023-04-05T22:19:42Z) - Large Language Models as Master Key: Unlocking the Secrets of Materials
Science with GPT [9.33544942080883]
This article presents a new natural language processing (NLP) task called structured information inference (SII) to address the complexities of information extraction at the device level in materials science.
We accomplished this task by tuning GPT-3 on an existing perovskite solar cell FAIR dataset with 91.8% F1-score and extended the dataset with data published since its release.
We also designed experiments to predict the electrical performance of solar cells and design materials or devices with targeted parameters using large language models (LLMs)
arXiv Detail & Related papers (2023-04-05T04:01:52Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.