論文の概要: O$^2$-Recon: Completing 3D Reconstruction of Occluded Objects in the Scene with a Pre-trained 2D Diffusion Model
- arxiv url: http://arxiv.org/abs/2308.09591v3
- Date: Tue, 19 Mar 2024 06:37:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 00:50:27.566327
- Title: O$^2$-Recon: Completing 3D Reconstruction of Occluded Objects in the Scene with a Pre-trained 2D Diffusion Model
- Title(参考訳): O$^2$-Recon: 事前学習した2次元拡散モデルによるシーンにおける付加物体の3次元再構成を補完する
- Authors: Yubin Hu, Sheng Ye, Wang Zhao, Matthieu Lin, Yuze He, Yu-Hui Wen, Ying He, Yong-Jin Liu,
- Abstract要約: 咬合は、RGB-Dビデオからの3D再構成において一般的な問題であり、しばしばオブジェクトの完全な再構成をブロックする。
本研究では,物体の隠れた部分の完全な表面を再構築する2次元拡散に基づくインペインティングモデルを用いて,新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 28.372289119872764
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Occlusion is a common issue in 3D reconstruction from RGB-D videos, often blocking the complete reconstruction of objects and presenting an ongoing problem. In this paper, we propose a novel framework, empowered by a 2D diffusion-based in-painting model, to reconstruct complete surfaces for the hidden parts of objects. Specifically, we utilize a pre-trained diffusion model to fill in the hidden areas of 2D images. Then we use these in-painted images to optimize a neural implicit surface representation for each instance for 3D reconstruction. Since creating the in-painting masks needed for this process is tricky, we adopt a human-in-the-loop strategy that involves very little human engagement to generate high-quality masks. Moreover, some parts of objects can be totally hidden because the videos are usually shot from limited perspectives. To ensure recovering these invisible areas, we develop a cascaded network architecture for predicting signed distance field, making use of different frequency bands of positional encoding and maintaining overall smoothness. Besides the commonly used rendering loss, Eikonal loss, and silhouette loss, we adopt a CLIP-based semantic consistency loss to guide the surface from unseen camera angles. Experiments on ScanNet scenes show that our proposed framework achieves state-of-the-art accuracy and completeness in object-level reconstruction from scene-level RGB-D videos. Code: https://github.com/THU-LYJ-Lab/O2-Recon.
- Abstract(参考訳): 咬合は、RGB-Dビデオからの3D再構成において一般的な問題であり、しばしばオブジェクトの完全な再構成をブロックし、進行中の問題を提示する。
本稿では,物体の隠れた部分の完全な表面を再構築する2次元拡散に基づくインペインティングモデルを用いて,新しい枠組みを提案する。
具体的には,事前学習した拡散モデルを用いて2次元画像の隠れた領域を埋める。
次に、これらのインペイント画像を用いて、各インスタンスのニューラル暗示表面表現を最適化し、3D再構成する。
このプロセスに必要な塗装マスクの作成は難しいので、我々は高品質なマスクを作成するために、人間のエンゲージメントをほとんど含まない、ループ内戦略を採用しています。
さらに、ビデオは通常、限られた視点から撮影されるため、オブジェクトの一部を完全に隠すことができる。
そこで我々は,これらの見えない領域の回復を確保するために,符号付き距離場を予測し,位置符号化の周波数帯域を多用し,全体的な滑らかさを維持するカスケードネットワークアーキテクチャを開発した。
一般的なレンダリング損失、アイコン損失、シルエット損失に加えて、CLIPに基づくセマンティック一貫性損失を採用し、見えないカメラアングルから表面を誘導する。
ScanNetのシーンでの実験では,シーンレベルのRGB-Dビデオからのオブジェクトレベルの再構築において,最先端の精度と完全性を実現している。
コード:https://github.com/THU-LYJ-Lab/O2-Recon
関連論文リスト
- Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
人間のインタラクションを最小限に抑えた3次元再構成法であるTotal-Decomを提案する。
提案手法は,Segment Anything Model (SAM) とハイブリッド型暗黙的なニューラルサーフェス表現をシームレスに統合し,メッシュベースの領域成長技術を用いて正確な3次元オブジェクト分解を行う。
提案手法をベンチマークデータセット上で広範囲に評価し,アニメーションやシーン編集などの下流アプリケーションの可能性を示す。
論文 参考訳(メタデータ) (2024-03-28T11:12:33Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - In-Hand 3D Object Reconstruction from a Monocular RGB Video [17.31419675163019]
我々の研究は、静止RGBカメラの前で手で保持・回転する3Dオブジェクトを再構築することを目的としている。
暗黙の神経表現を用いて、多視点画像からジェネリックハンドヘルドオブジェクトの形状を復元する従来の手法は、オブジェクトの可視部分において魅力的な結果を得た。
論文 参考訳(メタデータ) (2023-12-27T06:19:25Z) - NeRFiller: Completing Scenes via Generative 3D Inpainting [113.18181179986172]
生成3Dインパインティングによる3Dキャプチャの欠落部分を解消する手法であるNeRFillerを提案する。
関連する作品とは対照的に、前景のオブジェクトを削除するのではなく、シーンの完成に重点を置いている。
論文 参考訳(メタデータ) (2023-12-07T18:59:41Z) - Inpaint3D: 3D Scene Content Generation using 2D Inpainting Diffusion [18.67196713834323]
本稿では、2次元拡散モデルを学習された3次元シーン表現(例えば、NeRF)に蒸留することにより、マスク付き多視点画像を用いたシーンの3次元領域の塗装手法を提案する。
我々は,この2次元拡散モデルが,スコア蒸留サンプリングとNeRF再構成損失の組み合わせを用いてNeRFを最適化する3次元多視点再構成問題において,生成前のモデルとして機能することを示す。
提案手法は,任意の3次元マスキング領域を埋めるコンテンツを生成することができるため,3次元オブジェクト補完,3次元オブジェクト置換,3次元シーン補完も同時に行うことができる。
論文 参考訳(メタデータ) (2023-12-06T19:30:04Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGANは、画像インバージョンと潜時編集による2次元顔再構成とセマンティック編集において大きな進歩を遂げている。
対応する汎用的な3D GANインバージョンフレームワークがまだ欠けており、3D顔再構成とセマンティック編集の応用が制限されている。
本研究では,その3次元形状と詳細なテクスチャを忠実に復元するために,単一の顔画像から潜伏コードを予測する3D GAN逆変換の課題について検討する。
論文 参考訳(メタデータ) (2022-12-14T18:49:50Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
微分レンダリングは、シングルビュー3Dレコンストラクションに適用できる非常に成功した技術である。
電流は、ある3d再構成対象のレンダリング画像と、与えられたマッチング視点からの接地画像との間のピクセルによる損失を利用して、3d形状のパラメータを最適化する。
再構成された3次元点群の投影が地上真理物体のシルエットをどの程度覆うかを評価する新しい効果的な損失関数を提案する。
論文 参考訳(メタデータ) (2021-03-05T00:02:18Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONetは、単一画像から多目的3Dシーンの分解と表現を学習するための新しいアプローチである。
リカレントエンコーダは、入力されたRGB画像から、各オブジェクトの3D形状、ポーズ、テクスチャの潜時表現を回帰する。
我々は,3次元シーンレイアウトの推測におけるモデルの精度を評価し,その生成能力を実証し,実画像への一般化を評価し,学習した表現の利点を指摘する。
論文 参考訳(メタデータ) (2020-10-08T14:49:23Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
セマンティックな部分で3Dオブジェクトを復元し、直接編集することを目的としている。
我々の研究は、一般化された立方体と一般化されたシリンダーという、2種類の原始的な形状の物体を回収する試みである。
提案アルゴリズムは,高品質な3Dモデルを復元し,既存手法のインスタンスセグメンテーションと3D再構成の両方で性能を向上する。
論文 参考訳(メタデータ) (2020-05-27T12:16:24Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
我々は1つのRBG画像のみを入力として与えられた1つの物体の形状を再構築する深層学習の進歩の上に構築する。
提案する3つの拡張は,(1)局所的な2次元情報を物理的に正しい方法で出力3Dボリュームに伝播するレイトレーシングスキップ接続,(2)翻訳同変モデルの構築を可能にするハイブリッド3Dボリューム表現,(3)全体オブジェクトの形状を捉えるために調整された再構成損失である。
すべての物体がカメラに対して一貫した1つの3次元座標フレームに居住し、3次元空間内では交差しないコヒーレントな再構成を実現する。
論文 参考訳(メタデータ) (2020-04-27T17:53:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。