論文の概要: High Performance Computing Applied to Logistic Regression: A CPU and GPU
Implementation Comparison
- arxiv url: http://arxiv.org/abs/2308.10037v1
- Date: Sat, 19 Aug 2023 14:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 18:18:27.933818
- Title: High Performance Computing Applied to Logistic Regression: A CPU and GPU
Implementation Comparison
- Title(参考訳): ロジスティック回帰に応用した高性能コンピューティング:CPUとGPUの実装比較
- Authors: Nechba Mohammed, Mouhajir Mohamed, Sedjari Yassine
- Abstract要約: 汎用GPUによるロジスティック回帰(LR)の並列バージョンを提案する。
我々の実装は、X. Zouらによって提案された並列なグラディエントDescent Logistic Regressionアルゴリズムの直接変換である。
本手法は,画像認識,スパム検出,不正検出などのリアルタイム予測に特に有用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a versatile GPU-based parallel version of Logistic Regression
(LR), aiming to address the increasing demand for faster algorithms in binary
classification due to large data sets. Our implementation is a direct
translation of the parallel Gradient Descent Logistic Regression algorithm
proposed by X. Zou et al. [12]. Our experiments demonstrate that our GPU-based
LR outperforms existing CPU-based implementations in terms of execution time
while maintaining comparable f1 score. The significant acceleration of
processing large datasets makes our method particularly advantageous for
real-time prediction applications like image recognition, spam detection, and
fraud detection. Our algorithm is implemented in a ready-to-use Python library
available at : https://github.com/NechbaMohammed/SwiftLogisticReg
- Abstract(参考訳): 我々は,大規模データセットによるバイナリ分類における高速なアルゴリズムの需要の増加に対処するために,GPUベースの並列バージョンであるロジスティック回帰(LR)を提案する。
我々の実装は、X. Zouらによって提案された並列な勾配Descent Logistic Regressionアルゴリズムの直接変換である。
[12].
実験により、GPUベースのLRは、f1スコアを維持しながら、実行時間の観点から既存のCPUベースの実装よりも優れていることが示された。
大規模データセットの処理の大幅な高速化は,画像認識,スパム検出,不正検出などのリアルタイム予測アプリケーションに特に有利である。
私たちのアルゴリズムは、 https://github.com/NechbaMohammed/SwiftLogisticRegで利用可能なPythonライブラリで実装されています。
関連論文リスト
- Implementation and Analysis of GPU Algorithms for Vecchia Approximation [0.8057006406834466]
Vecchia Approximationは計算複雑性を減らすために広く使われており、恥ずかしい並列アルゴリズムで計算することができる。
Vecchia Approximationのためにマルチコアソフトウェアが開発されたが、グラフィックス処理ユニット(GPU)上で動作するように設計されたソフトウェアは不足している。
我々の新しい手法は他の2つより優れており、GpGpU Rパッケージに表示されます。
論文 参考訳(メタデータ) (2024-07-03T01:24:44Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
計算グラフとして表される関数を考えると、従来のアーキテクチャはn階勾配を効率的に計算する上で困難に直面している。
InR-Archは,n階勾配の計算グラフをハードウェア最適化データフローアーキテクチャに変換するフレームワークである。
1.8-4.8x と 1.5-3.6x の高速化を CPU と GPU のベースラインと比較した結果を示す。
論文 参考訳(メタデータ) (2023-08-11T04:24:39Z) - Going faster to see further: GPU-accelerated value iteration and
simulation for perishable inventory control using JAX [5.856836693166898]
我々はPythonライブラリJAXを使って、ハイレベルなAPIで基礎となるMarkov決定プロセスの反復とシミュレータを実装しています。
提案手法は,従来は実現不可能あるいは現実的と考えられていた設定に値反復の使用を拡張できる。
我々は、複数の候補ポリシーパラメータの並列評価を可能にするJAXのシミュレーション最適化を用いて、最適補充ポリシーの性能をポリシーと比較した。
論文 参考訳(メタデータ) (2023-03-19T14:20:44Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
PartIMEは、データが継続的にストリーミングされるたびにニューラルネットワークを高速化するように設計されたライブラリです。
PartIMEは、ストリームから利用可能になった時点で、各データサンプルの処理を開始する。
オンライン学習において、PartialIMEと古典的な非並列ニューラル計算を経験的に比較するために実験が行われる。
論文 参考訳(メタデータ) (2022-10-17T14:49:14Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
本稿では,Adaptive SGDが4つの最先端ソリューションよりも精度が高いことを示す。
本稿では,Adaptive SGDが時間と精度で4つの最先端ソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2021-10-13T20:58:15Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
ロジスティック回帰や線形サポートベクターマシン(SVM)分類などのL2正規化原始問題を解く最も効率的な方法の1つは、広く使われている信頼領域ニュートンアルゴリズムであるTRONである。
我々は、GPU最適化の法則を用いて、異なる損失と特徴表現に対するTRONトレーニング時間を劇的に短縮できることを示した。
論文 参考訳(メタデータ) (2020-08-08T03:40:27Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。