Minimizing Turns in Watchman Robot Navigation: Strategies and Solutions
- URL: http://arxiv.org/abs/2308.10090v1
- Date: Sat, 19 Aug 2023 18:53:53 GMT
- Title: Minimizing Turns in Watchman Robot Navigation: Strategies and Solutions
- Authors: Hamid Hoorfar, Sara Moshtaghi Largani, Reza Rahimi, and Alireza
Bagheri
- Abstract summary: This paper introduces an efficient linear-time algorithm for solving the Orthogonal Watchman Route Problem (OWRP)
The findings of this study contribute to the progress of robotic systems by enabling the design of more streamlined patrol robots.
- Score: 1.6749379740049928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Orthogonal Watchman Route Problem (OWRP) entails the search for the
shortest path, known as the watchman route, that a robot must follow within a
polygonal environment. The primary objective is to ensure that every point in
the environment remains visible from at least one point on the route, allowing
the robot to survey the entire area in a single, continuous sweep. This
research places particular emphasis on reducing the number of turns in the
route, as it is crucial for optimizing navigation in watchman routes within the
field of robotics. The cost associated with changing direction is of
significant importance, especially for specific types of robots. This paper
introduces an efficient linear-time algorithm for solving the OWRP under the
assumption that the environment is monotone. The findings of this study
contribute to the progress of robotic systems by enabling the design of more
streamlined patrol robots. These robots are capable of efficiently navigating
complex environments while minimizing the number of turns. This advancement
enhances their coverage and surveillance capabilities, making them highly
effective in various real-world applications.
Related papers
- Multi-Robot Informative Path Planning for Efficient Target Mapping using Deep Reinforcement Learning [11.134855513221359]
We propose a novel deep reinforcement learning approach for multi-robot informative path planning.
We train our reinforcement learning policy via the centralized training and decentralized execution paradigm.
Our approach outperforms other state-of-the-art multi-robot target mapping approaches by 33.75% in terms of the number of discovered targets-of-interest.
arXiv Detail & Related papers (2024-09-25T14:27:37Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Exploring Robot Trajectory Planning -- A Comparative Analysis of Algorithms And Software Implementations in Dynamic Environments [0.0]
Trajectory planning is a crucial word in Modern & Advanced Robotics.
It's a way of generating a smooth and feasible path for the robot to follow over time.
Trajectory planning is extensively used in Automobile Industrial Robot, Manipulators, and Mobile Robots.
arXiv Detail & Related papers (2024-07-18T09:30:27Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
Multi-robot motion planning (MRMP) is the problem of finding collision-free paths for a set of robots in a continuous state space.
We extend an existing single-robot motion planning method to leverage the improved efficiency provided by topological guidance.
We demonstrate our method's ability to efficiently plan paths in complex environments with many narrow passages, scaling to robot teams of size up to 25 times larger than existing methods.
arXiv Detail & Related papers (2022-10-13T16:26:01Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Autonomous Navigation in Dynamic Environments: Deep Learning-Based
Approach [0.0]
This thesis studies different deep learning-based approaches, highlighting the advantages and disadvantages of each scheme.
One of the deep learning methods based on convolutional neural network (CNN) is realized by software implementations.
We propose a low-cost approach, for indoor applications such as restaurants, museums, etc, on the base of using a monocular camera instead of a laser scanner.
arXiv Detail & Related papers (2021-02-03T23:20:20Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - Minimizing Robot Navigation-Graph For Position-Based Predictability By
Humans [20.13307800821161]
In situations where humans and robots are moving in the same space whilst performing their own tasks, predictable paths are vital.
The cognitive effort for the human to predict the robot's path becomes untenable as the number of robots increases.
We propose to minimize the navigation-graph of the robot for position-based predictability.
arXiv Detail & Related papers (2020-10-28T22:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.