Polymerized Feature-based Domain Adaptation for Cervical Cancer Dose Map
Prediction
- URL: http://arxiv.org/abs/2308.10142v1
- Date: Sun, 20 Aug 2023 03:00:27 GMT
- Title: Polymerized Feature-based Domain Adaptation for Cervical Cancer Dose Map
Prediction
- Authors: Jie Zeng, Zeyu Han, Xingchen Peng, Jianghong Xiao, Peng Wang, Yan Wang
- Abstract summary: This paper proposes to transfer the rich knowledge learned from another cancer, i.e., rectum cancer, to improve the dose map prediction performance for cervical cancer.
In order to close the congenital domain gap between the source (i.e., rectum cancer) and the target (i.e., cervical cancer) domains, we develop an effective Transformer-based polymerized feature module (PFM)
Experimental results on two in-house clinical datasets demonstrate the superiority of the proposed method compared with state-of-the-art methods.
- Score: 11.171148748269927
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, deep learning (DL) has automated and accelerated the clinical
radiation therapy (RT) planning significantly by predicting accurate dose maps.
However, most DL-based dose map prediction methods are data-driven and not
applicable for cervical cancer where only a small amount of data is available.
To address this problem, this paper proposes to transfer the rich knowledge
learned from another cancer, i.e., rectum cancer, which has the same scanning
area and more clinically available data, to improve the dose map prediction
performance for cervical cancer through domain adaptation. In order to close
the congenital domain gap between the source (i.e., rectum cancer) and the
target (i.e., cervical cancer) domains, we develop an effective
Transformer-based polymerized feature module (PFM), which can generate an
optimal polymerized feature distribution to smoothly align the two input
distributions. Experimental results on two in-house clinical datasets
demonstrate the superiority of the proposed method compared with
state-of-the-art methods.
Related papers
- Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
We build different Bayesian neural network approaches to develop semantic segmentation of colorectal polyp images.
We found that these models not only provide state-of-the-art performance on the segmentation of this medical dataset but also, yield accurate uncertainty estimates.
arXiv Detail & Related papers (2024-07-23T16:13:27Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
We introduce a multi-modal heterogeneous graph-based conditional feature-guided diffusion model for lymph node metastasis diagnosis based on CT images.
We propose a masked relational representation learning strategy, aiming to uncover the latent prognostic correlations and priorities of primary tumor and lymph node image representations.
arXiv Detail & Related papers (2024-05-15T17:52:00Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Data is an open-source benchmark dataset of volumetric CDI$s$ imaging data of PCa patients.
Cancer-Net PCa-Data is the first-ever public dataset of CDI$s$ imaging data for PCa.
arXiv Detail & Related papers (2023-11-20T10:28:52Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
This paper deals with the classification problem of human cancer diseases by using gene expression data.
It is presented a new methodology to analyze microarray datasets and efficiently classify cancer diseases.
arXiv Detail & Related papers (2022-05-27T04:22:10Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node
Colon Adenocarcinoma Metastasis Detection [8.69535649683089]
scarcity of labeled data is a major bottleneck for developing deep learning-based models for histopathology applications.
This work explores alternatives on how to augment the training data for colon carcinoma metastasis detection when there is limited or no representation of the target domain.
arXiv Detail & Related papers (2021-09-17T17:31:25Z) - Self-transfer learning via patches: A prostate cancer triage approach
based on bi-parametric MRI [1.3934382972253603]
Prostate cancer (PCa) is the second most common cancer diagnosed among men worldwide.
The current PCa diagnostic pathway comes at the cost of substantial overdiagnosis, leading to unnecessary treatment and further testing.
We present a patch-based pre-training strategy to distinguish between clinically significant (cS) and non-clinically significant (ncS) lesions.
arXiv Detail & Related papers (2021-07-22T17:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.