論文の概要: Simple Baselines for Interactive Video Retrieval with Questions and
Answers
- arxiv url: http://arxiv.org/abs/2308.10402v1
- Date: Mon, 21 Aug 2023 00:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 15:38:41.665707
- Title: Simple Baselines for Interactive Video Retrieval with Questions and
Answers
- Title(参考訳): 質問と回答を伴うインタラクティブビデオ検索のための簡易ベースライン
- Authors: Kaiqu Liang, Samuel Albanie
- Abstract要約: 本稿では,質問応答による対話型ビデオ検索のための,シンプルで効果的なベースラインを提案する。
ユーザインタラクションをシミュレートするためにビデオQAモデルを用い,対話型検索タスクの生産性向上を可能にすることを示す。
MSR-VTT, MSVD, AVSDによる実験により, 問合せに基づくインタラクションを用いたフレームワークは, テキストベースのビデオ検索システムの性能を大幅に向上させることが示された。
- 参考スコア(独自算出の注目度): 33.17722358007974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To date, the majority of video retrieval systems have been optimized for a
"single-shot" scenario in which the user submits a query in isolation, ignoring
previous interactions with the system. Recently, there has been renewed
interest in interactive systems to enhance retrieval, but existing approaches
are complex and deliver limited gains in performance. In this work, we revisit
this topic and propose several simple yet effective baselines for interactive
video retrieval via question-answering. We employ a VideoQA model to simulate
user interactions and show that this enables the productive study of the
interactive retrieval task without access to ground truth dialogue data.
Experiments on MSR-VTT, MSVD, and AVSD show that our framework using
question-based interaction significantly improves the performance of text-based
video retrieval systems.
- Abstract(参考訳): これまで、ほとんどのビデオ検索システムは、ユーザが単独でクエリを提出する「単発」シナリオに最適化されており、システムとの以前のインタラクションを無視している。
近年,検索機能向上のためのインタラクティブシステムへの関心が高まっているが,既存のアプローチは複雑であり,性能的にも限界がある。
本稿では,このトピックを再考し,質問応答によるインタラクティブなビデオ検索のための,シンプルかつ効果的なベースラインを提案する。
本研究では,ユーザインタラクションをシミュレートするvideoqaモデルを用いて,対話的な検索タスクを,真理対話データにアクセスせずに生産的に研究できることを示す。
MSR-VTT, MSVD, AVSDによる実験により, 問合せに基づくインタラクションにより, テキストベースのビデオ検索システムの性能が大幅に向上することが示された。
関連論文リスト
- VideoRAG: Retrieval-Augmented Generation over Video Corpus [57.68536380621672]
VideoRAGは、クエリと関連性に基づいて関連動画を動的に検索する新しいフレームワークである。
我々は,ビデオRAGの有効性を実験的に検証し,関連するベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2025-01-10T11:17:15Z) - Query-centric Audio-Visual Cognition Network for Moment Retrieval, Segmentation and Step-Captioning [56.873534081386]
ビデオ検索、モーメント検索、モーメントセグメンテーション、ステップキャプションを含む新しいトピックHIRESTが紹介されている。
3つのタスクに対して信頼性の高いマルチモーダル表現を構築するために,クエリ中心の音声視覚認知ネットワークを提案する。
これにより、ユーザが優先するコンテンツを認識し、3つのタスクに対してクエリ中心の音声視覚表現を実現することができる。
論文 参考訳(メタデータ) (2024-12-18T06:43:06Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
本稿では,テキストとビデオ間の固有情報不均衡に対処するため,新しいデータ中心型アプローチであるGeneralized Query Expansion (GQE)を提案する。
ビデオをショートクリップにアダプティブに分割し、ゼロショットキャプションを採用することで、GQEはトレーニングデータセットを総合的なシーン記述で強化する。
GQEは、MSR-VTT、MSVD、SMDC、VATEXなど、いくつかのベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-14T01:24:09Z) - Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
本稿では,対話型テキスト・画像検索タスクにおける対話型コンテキストクエリの問題に対処する。
対話形式のコンテキストを再構成することにより、既存の視覚的対話データから検索モデルを微調整する必要がなくなる。
対象画像の属性に関する非冗長な質問を生成するために,LLM質問機を構築した。
論文 参考訳(メタデータ) (2024-06-05T16:09:01Z) - ProCIS: A Benchmark for Proactive Retrieval in Conversations [21.23826888841565]
本稿では,280万件以上の会話からなるプロアクティブな文書検索のための大規模データセットを提案する。
クラウドソーシング実験を行い、高品質で比較的完全な妥当性判定を行う。
また、各文書に関連する会話部分に関するアノテーションを収集し、前向きな検索システムの評価を可能にする。
論文 参考訳(メタデータ) (2024-05-10T13:11:07Z) - DVIS-DAQ: Improving Video Segmentation via Dynamic Anchor Queries [60.09774333024783]
動的アンカークエリ(DAQ)を導入し、アンカーとターゲットクエリ間の遷移ギャップを短くする。
また,クエリレベルのオブジェクトEmergence and Disappearance Simulation(EDS)戦略を導入する。
実験により、DVIS-DAQは5つの主流ビデオセグメンテーションベンチマーク上で、新しい最先端(SOTA)性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-29T17:58:50Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
本稿では,映像情報とテキスト情報の相乗効果を向上するための最先端フレームワークであるVaQuitAを紹介する。
データレベルでは、フレームを均一にサンプリングする代わりに、CLIPスコアランキングでガイドされるサンプリング手法を実装している。
機能レベルでは、Visual-Query Transformerと一緒にトレーニング可能なVideo Perceiverを統合します。
論文 参考訳(メタデータ) (2023-12-04T19:48:02Z) - Zero-shot Audio Topic Reranking using Large Language Models [42.774019015099704]
実例によるマルチモーダルビデオ検索 (MVSE) では, ビデオクリップを情報検索の問合せ語として利用する。
本研究の目的は,この高速アーカイブ検索による性能損失を,再ランク付け手法を検証することによって補償することである。
パブリックなビデオアーカイブであるBBC Rewind corpusでトピックベースの検索のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2023-09-14T11:13:36Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
本研究では,対話コンテキストと関連ビデオに基づいて応答を生成するビデオグラウンド・ダイアログ生成について検討する。
本課題の主な課題は,(1)事前学習言語モデル(PLM)に映像データを統合することの難しさである。
異なるモーダルの推論を協調的に行うマルチエージェント強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-22T14:45:29Z) - Learning to Retrieve Videos by Asking Questions [29.046045230398708]
本稿では,ダイアログ(ViReD)を用いたビデオ検索のための新しいフレームワークを提案する。
このフレームワークの主な貢献は、その後のビデオ検索性能を最大化する質問を学習する、新しいマルチモーダル質問生成器である。
AVSDデータセット上での対話型ViReDフレームワークの有効性を検証し,従来の非対話型ビデオ検索システムよりも対話型手法の方が優れた性能を示した。
論文 参考訳(メタデータ) (2022-05-11T19:14:39Z) - Part2Whole: Iteratively Enrich Detail for Cross-Modal Retrieval with
Partial Query [25.398090300086302]
本稿では,この問題に対処する対話型検索フレームワークPart2Wholeを提案する。
Interactive Retrieval Agentは、初期クエリを洗練するための最適なポリシーを構築するために訓練される。
テキスト画像データセット以外の人手による注釈データを必要としない弱教師付き強化学習法を提案する。
論文 参考訳(メタデータ) (2021-03-02T11:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。