論文の概要: Federated Learning for Connected and Automated Vehicles: A Survey of
Existing Approaches and Challenges
- arxiv url: http://arxiv.org/abs/2308.10407v1
- Date: Mon, 21 Aug 2023 01:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 15:39:04.763928
- Title: Federated Learning for Connected and Automated Vehicles: A Survey of
Existing Approaches and Challenges
- Title(参考訳): 自律走行車のための連帯学習--既存手法と課題の検討
- Authors: Vishnu Pandi Chellapandi and Liangqi Yuan and Christopher G. Brinton
and Stanislaw H Zak and Ziran Wang
- Abstract要約: 機械学習(ML)は、コネクテッド・アンド・オートマチック・ビークル(CAV)の主要なタスクに広く使われている
フェデレートラーニング(FL)は、複数の車両が協調してモデルを開発することを可能にする、分散MLアプローチである。
本稿では, FL の CAV (FL4CAV) への適用における進歩を概観する。
- 参考スコア(独自算出の注目度): 8.20034065712914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) is widely used for key tasks in Connected and Automated
Vehicles (CAV), including perception, planning, and control. However, its
reliance on vehicular data for model training presents significant challenges
related to in-vehicle user privacy and communication overhead generated by
massive data volumes. Federated learning (FL) is a decentralized ML approach
that enables multiple vehicles to collaboratively develop models, broadening
learning from various driving environments, enhancing overall performance, and
simultaneously securing local vehicle data privacy and security. This survey
paper presents a review of the advancements made in the application of FL for
CAV (FL4CAV). First, centralized and decentralized frameworks of FL are
analyzed, highlighting their key characteristics and methodologies. Second,
diverse data sources, models, and data security techniques relevant to FL in
CAVs are reviewed, emphasizing their significance in ensuring privacy and
confidentiality. Third, specific and important applications of FL are explored,
providing insight into the base models and datasets employed for each
application. Finally, existing challenges for FL4CAV are listed and potential
directions for future work are discussed to further enhance the effectiveness
and efficiency of FL in the context of CAV.
- Abstract(参考訳): 機械学習(ml)は、知覚、計画、制御を含む、コネクテッドおよび自動車両(cav)における重要なタスクに広く使われている。
しかし、モデルトレーニングにおける車両データへの依存は、車内ユーザのプライバシと大量のデータボリュームが生み出す通信オーバーヘッドに重大な課題をもたらす。
フェデレートラーニング(FL)は、複数の車両が協力してモデルを開発し、さまざまな運転環境からの学習を拡大し、全体的なパフォーマンスを高め、ローカル車両のデータプライバシとセキュリティを同時に確保する、分散MLアプローチである。
本報告では, FL の CAV (FL4CAV) への適用における進歩について概説する。
まず、flの集中型フレームワークと分散フレームワークを分析し、その重要な特徴と方法論を強調する。
次に、CAVにおけるFLに関連する多様なデータソース、モデル、およびデータセキュリティ技術についてレビューし、プライバシーと機密性を保証することの重要性を強調した。
第3に、FLの具体的かつ重要な応用を探求し、各アプリケーションに使用されるベースモデルとデータセットに関する洞察を提供する。
最後に、FL4CAVの既存の課題をリストアップし、CAVの文脈におけるFLの有効性と効率をさらに高めるための今後の取り組みの可能性について論じる。
関連論文リスト
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications [6.042202852003457]
Federated Learning(FL)は、堅牢な機械学習(ML)モデルを開発するためのテクニックである。
ユーザのプライバシを保護するため、FLでは、大量の生データや潜在的機密データを送信するのではなく、モデル更新を送信する必要がある。
このサーベイは、最新のFLアルゴリズムの包括的な分析と比較を提供する。
論文 参考訳(メタデータ) (2023-10-08T19:54:26Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - A Survey of Federated Learning for Connected and Automated Vehicles [2.348805691644086]
コネクテッド・アンド・オートマチック・ビークルズ(CAV)は、自動車分野における新興技術の1つである。
フェデレートラーニング(FL)は、複数の車両との協調モデル開発を可能にするCAVの効果的なソリューションである。
論文 参考訳(メタデータ) (2023-03-19T14:44:37Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
侵入検知システムは、スマートデバイスのセキュリティとプライバシを確保する上で重要な役割を果たす。
本稿では,侵入検知システムにおけるFLの使用について,広範囲かつ徹底的に検討することを目的とする。
論文 参考訳(メタデータ) (2021-06-16T13:13:04Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z) - Federated Learning in Vehicular Networks [41.89469856322786]
フェデレートラーニング(FL)フレームワークは、トランスミッションオーバーヘッドを減らすことを目的として、効率的なツールとして導入された。
本稿では,車載ネットワークアプリケーションにおける一元学習(CL)によるFLを用いたインテリジェント交通システムの構築について検討する。
データラベリングやモデルトレーニングといった学習の観点からも,コミュニケーションの観点からも,データレート,信頼性,送信オーバーヘッド,プライバシ,リソース管理といった面から,大きな課題を識別する。
論文 参考訳(メタデータ) (2020-06-02T06:32:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。