Federated Learning for Connected and Automated Vehicles: A Survey of
Existing Approaches and Challenges
- URL: http://arxiv.org/abs/2308.10407v2
- Date: Sat, 11 Nov 2023 21:51:17 GMT
- Title: Federated Learning for Connected and Automated Vehicles: A Survey of
Existing Approaches and Challenges
- Authors: Vishnu Pandi Chellapandi and Liangqi Yuan and Christopher G. Brinton
and Stanislaw H Zak and Ziran Wang
- Abstract summary: Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles (CAV)
Federated learning (FL) is a decentralized ML approach that enables multiple vehicles to collaboratively develop models.
This survey paper presents a review of the advancements made in the application of FL for CAV (FL4CAV)
- Score: 8.20034065712914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) is widely used for key tasks in Connected and Automated
Vehicles (CAV), including perception, planning, and control. However, its
reliance on vehicular data for model training presents significant challenges
related to in-vehicle user privacy and communication overhead generated by
massive data volumes. Federated learning (FL) is a decentralized ML approach
that enables multiple vehicles to collaboratively develop models, broadening
learning from various driving environments, enhancing overall performance, and
simultaneously securing local vehicle data privacy and security. This survey
paper presents a review of the advancements made in the application of FL for
CAV (FL4CAV). First, centralized and decentralized frameworks of FL are
analyzed, highlighting their key characteristics and methodologies. Second,
diverse data sources, models, and data security techniques relevant to FL in
CAVs are reviewed, emphasizing their significance in ensuring privacy and
confidentiality. Third, specific applications of FL are explored, providing
insight into the base models and datasets employed for each application.
Finally, existing challenges for FL4CAV are listed and potential directions for
future investigation to further enhance the effectiveness and efficiency of FL
in the context of CAV are discussed.
Related papers
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications [6.042202852003457]
Federated learning (FL) is a technique for developing robust machine learning (ML) models.
To protect user privacy, FL requires users to send model updates rather than transmitting large quantities of raw and potentially confidential data.
This survey provides a comprehensive analysis and comparison of the most recent FL algorithms.
arXiv Detail & Related papers (2023-10-08T19:54:26Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - A Survey of Federated Learning for Connected and Automated Vehicles [2.348805691644086]
Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain.
Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles.
arXiv Detail & Related papers (2023-03-19T14:44:37Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.