論文の概要: BAN-PL: a Novel Polish Dataset of Banned Harmful and Offensive Content from Wykop.pl web service
- arxiv url: http://arxiv.org/abs/2308.10592v3
- Date: Tue, 26 Mar 2024 12:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:20:23.358325
- Title: BAN-PL: a Novel Polish Dataset of Banned Harmful and Offensive Content from Wykop.pl web service
- Title(参考訳): BAN-PL: Wykop.pl Webサービスによる禁止された有害かつ悪質なコンテンツに関するポーランドの新しいデータセット
- Authors: Anna Kołos, Inez Okulska, Kinga Głąbińska, Agnieszka Karlińska, Emilia Wiśnios, Paweł Ellerik, Andrzej Prałat,
- Abstract要約: 本稿では,ポーランド語に対する攻撃的ソーシャルメディアコンテンツのオープンデータセットを提案する。
このデータセットは、しばしば"Polish Reddit"と呼ばれる人気のオンラインサービスであるWykop.plのコンテンツで構成されている。
691,662件の投稿とコメントが含まれており、「有害」と「中立」の2つのカテゴリに分けられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the Internet is flooded with hate, it is one of the main tasks for NLP experts to master automated online content moderation. However, advancements in this field require improved access to publicly available accurate and non-synthetic datasets of social media content. For the Polish language, such resources are very limited. In this paper, we address this gap by presenting a new open dataset of offensive social media content for the Polish language. The dataset comprises content from Wykop.pl, a popular online service often referred to as the "Polish Reddit", reported by users and banned in the internal moderation process. It contains a total of 691,662 posts and comments, evenly divided into two categories: "harmful" and "neutral" ("non-harmful"). The anonymized subset of the BAN-PL dataset consisting on 24,000 pieces (12,000 for each class), along with preprocessing scripts have been made publicly available. Furthermore the paper offers valuable insights into real-life content moderation processes and delves into an analysis of linguistic features and content characteristics of the dataset. Moreover, a comprehensive anonymization procedure has been meticulously described and applied. The prevalent biases encountered in similar datasets, including post-moderation and pre-selection biases, are also discussed.
- Abstract(参考訳): インターネットは憎しみで溢れているため、NLPの専門家がオンラインコンテンツの自動モデレーションを習得する主なタスクの1つである。
しかし、この分野の進歩は、ソーシャルメディアコンテンツの正確で合成されていないデータセットへのアクセスを改善する必要がある。
ポーランド語では、そのような資源は非常に限られている。
本稿では,ポーランド語に対する攻撃的ソーシャルメディアコンテンツのオープンデータセットを新たに提示することで,このギャップに対処する。
このデータセットは、ユーザによって報告され、内部モデレーションプロセスで禁止される"Polish Reddit"と呼ばれる人気のあるオンラインサービスであるWykop.plのコンテンツで構成されている。
691,662件の投稿とコメントがあり、「有害」と「中立」の2つのカテゴリに分けられている。
BAN-PLデータセットの匿名化サブセットは24,000ピース (クラス毎に12,000個) で、前処理スクリプトも公開されている。
さらに,本論文では,実生活におけるコンテンツモデレーションのプロセスと,データセットの言語的特徴と内容特性の分析を考察する。
さらに、包括的な匿名化手順を慎重に記述し、適用している。
同様のデータセットで発生する偏見、例えば、修正後の偏見や選択前の偏見についても論じる。
関連論文リスト
- OPSD: an Offensive Persian Social media Dataset and its baseline evaluations [2.356562319390226]
本稿ではペルシャ語に対する2つの攻撃的データセットを紹介する。
第1のデータセットはドメインの専門家によって提供されるアノテーションで構成されており、第2のデータセットはWebクローリングによって得られたラベルなしデータの大規模なコレクションで構成されている。
得られたデータセットの3クラスと2クラスのF1スコアはそれぞれ76.9%、XLM-RoBERTaは89.9%であった。
論文 参考訳(メタデータ) (2024-04-08T14:08:56Z) - RuBia: A Russian Language Bias Detection Dataset [3.8501658629243076]
本稿では,RuBiaと呼ばれるロシア語に特化して設計されたバイアス検出データセットを提案する。
RuBiaデータセットは、性別、国籍、社会経済的地位、多様性の4つの領域に分けられる。
ルビアには、19の国に2000近いユニークな文が散在している。
論文 参考訳(メタデータ) (2024-03-26T10:01:01Z) - Into the LAIONs Den: Investigating Hate in Multimodal Datasets [67.21783778038645]
本稿では、LAION-400MとLAION-2Bの2つのデータセットの比較監査を通して、ヘイトフルコンテンツに対するデータセットのスケーリングの効果について検討する。
その結果、データセットのスケールによってヘイトコンテンツは12%近く増加し、質的にも定量的にも測定された。
また、画像のみに基づいて算出されたNot Safe For Work(NSFW)値に基づくデータセットの内容のフィルタリングは、アルトテキストにおける有害なコンテンツをすべて排除するものではないことがわかった。
論文 参考訳(メタデータ) (2023-11-06T19:00:05Z) - Why Should This Article Be Deleted? Transparent Stance Detection in
Multilingual Wikipedia Editor Discussions [47.944081120226905]
ウィキペディア編集者の議論の新たなデータセットを3言語で構築する。
データセットには、エディタのスタンス(keep、delete、merge、コメント)と、記述された理由、編集決定ごとにコンテンツモデレーションポリシーが含まれている。
我々は、姿勢とそれに対応する理由(政治)を高い精度で予測し、意思決定プロセスに透明性を加えることを実証する。
論文 参考訳(メタデータ) (2023-10-09T15:11:02Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Detecting Unintended Social Bias in Toxic Language Datasets [32.724030288421474]
本稿では,既存のKaggleコンペティションのデータセットであるJigsaw Unintended Bias in Toxicity Classificationから算出した新しいデータセットであるToxicBiasを紹介する。
データセットには、5つの異なるバイアスカテゴリ、viz.、性、人種/民族性、宗教、政治的、LGBTQに注釈付けされたインスタンスが含まれている。
得られたデータセットを用いてトランスフォーマーベースモデルをトレーニングし、バイアス識別、ターゲット生成、バイアス含意に関するベースライン性能を報告する。
論文 参考訳(メタデータ) (2022-10-21T06:50:12Z) - BD-SHS: A Benchmark Dataset for Learning to Detect Online Bangla Hate
Speech in Different Social Contexts [1.5483942282713241]
本稿では,Hate Speechをソーシャルコンテキストに含めた大規模ラベル付きデータセットを提案する。
データセットには、オンラインソーシャルネットワークサイトからクロールされた50,200件以上の攻撃的なコメントが含まれている。
実験の結果,147万コメントのみを用いてトレーニングした単語の埋め込みが一貫してHS検出のモデリングを改善することがわかった。
論文 参考訳(メタデータ) (2022-06-01T10:10:15Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z) - Trawling for Trolling: A Dataset [56.1778095945542]
攻撃的コンテンツのサブカテゴリとしてトロリングをモデル化するデータセットを提案する。
データセットには12,490のサンプルがあり、5つのクラスに分かれている。
論文 参考訳(メタデータ) (2020-08-02T17:23:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。