論文の概要: Deep Evidential Learning for Bayesian Quantile Regression
- arxiv url: http://arxiv.org/abs/2308.10650v1
- Date: Mon, 21 Aug 2023 11:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 13:52:13.845278
- Title: Deep Evidential Learning for Bayesian Quantile Regression
- Title(参考訳): ベイズ量子回帰の深い証拠学習
- Authors: Frederik Boe H\"uttel, Filipe Rodrigues, Francisco C\^amara Pereira
- Abstract要約: 1つの決定論的フォワードパスモデルから正確な不確実性を推定することが望ましい。
本稿では,ガウス的仮定を使わずに連続目標分布の量子化を推定できるディープベイズ量子回帰モデルを提案する。
- 参考スコア(独自算出の注目度): 3.6294895527930504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is desirable to have accurate uncertainty estimation from a single
deterministic forward-pass model, as traditional methods for uncertainty
quantification are computationally expensive. However, this is difficult
because single forward-pass models do not sample weights during inference and
often make assumptions about the target distribution, such as assuming it is
Gaussian. This can be restrictive in regression tasks, where the mean and
standard deviation are inadequate to model the target distribution accurately.
This paper proposes a deep Bayesian quantile regression model that can estimate
the quantiles of a continuous target distribution without the Gaussian
assumption. The proposed method is based on evidential learning, which allows
the model to capture aleatoric and epistemic uncertainty with a single
deterministic forward-pass model. This makes the method efficient and scalable
to large models and datasets. We demonstrate that the proposed method achieves
calibrated uncertainties on non-Gaussian distributions, disentanglement of
aleatoric and epistemic uncertainty, and robustness to out-of-distribution
samples.
- Abstract(参考訳): 従来の不確実性定量化手法は計算コストがかかるため,単一の決定論的前方通過モデルから正確な不確実性推定を行うことが望ましい。
しかし、単一のフォワードパスモデルは推論中に重みをサンプリングせず、ガウス的であると仮定するなどターゲット分布について仮定することが多いため、これは難しい。
これは、目標分布を正確にモデル化するには平均偏差と標準偏差が不十分な回帰タスクで制限できる。
本稿では,ガウス的仮定を使わずに連続目標分布の量子化を推定できるディープベイズ量子回帰モデルを提案する。
提案手法は,1つの決定論的フォワードパスモデルを用いて,失語症およびてんかんの不確かさを捉えることを可能とする。
これにより、この方法は大規模モデルやデータセットに対して効率的かつスケーラブルになる。
提案手法は,非ガウス分布のキャリブレーションされた不確実性,アレタリックおよびてんかんの不確実性の解消,および分布外試料に対するロバスト性を実現する。
関連論文リスト
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
機械学習の原子間ポテンシャルの不確実性推定は、導入した追加モデルエラーの定量化に不可欠である。
我々は、クーロンおよびSOAP表現を持つGPRモデルを、ポテンシャルエネルギー表面と分子の励起エネルギーを予測する入力として考える。
我々は,GPRの分散とアンサンブルに基づく不確かさが誤差とどのように関係しているか,また,固定された構成空間から最も不確実なサンプルを選択することによりモデル性能が向上するかを評価する。
論文 参考訳(メタデータ) (2024-10-27T10:06:09Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Estimating Regression Predictive Distributions with Sample Networks [17.935136717050543]
モデル不確実性に対する一般的なアプローチは、パラメトリック分布を選択し、最大推定を用いてデータに適合させることである。
選択されたパラメトリック形式は、データ生成分布に不適合であり、信頼できない不確実性推定をもたらす。
出力分布にパラメトリック形式を指定することを避けるため,不確実性をモデル化するためのフレキシブルでスケーラブルなアーキテクチャであるSampleNetを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:23:29Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
モデル選択が不確実性評価に与える影響について検討する。
モデルミスセグメンテーションでは,アレータリック不確実性は適切に捉えられていない。
論文 参考訳(メタデータ) (2021-11-23T10:18:41Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。