Deep Learning Techniques in Extreme Weather Events: A Review
- URL: http://arxiv.org/abs/2308.10995v1
- Date: Fri, 18 Aug 2023 08:15:21 GMT
- Title: Deep Learning Techniques in Extreme Weather Events: A Review
- Authors: Shikha Verma, Kuldeep Srivastava, Akhilesh Tiwari, Shekhar Verma
- Abstract summary: This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field.
We explore the utilization of deep learning architectures, across various aspects of weather prediction.
We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships.
- Score: 7.298515369993722
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Extreme weather events pose significant challenges, thereby demanding
techniques for accurate analysis and precise forecasting to mitigate its
impact. In recent years, deep learning techniques have emerged as a promising
approach for weather forecasting and understanding the dynamics of extreme
weather events. This review aims to provide a comprehensive overview of the
state-of-the-art deep learning in the field. We explore the utilization of deep
learning architectures, across various aspects of weather prediction such as
thunderstorm, lightning, precipitation, drought, heatwave, cold waves and
tropical cyclones. We highlight the potential of deep learning, such as its
ability to capture complex patterns and non-linear relationships. Additionally,
we discuss the limitations of current approaches and highlight future
directions for advancements in the field of meteorology. The insights gained
from this systematic review are crucial for the scientific community to make
informed decisions and mitigate the impacts of extreme weather events.
Related papers
- XAI4Extremes: An interpretable machine learning framework for understanding extreme-weather precursors under climate change [9.795404493806402]
Extreme weather events are increasing in frequency and intensity due to climate change.
While prediction skills are increasing with advances in numerical weather prediction and artificial intelligence tools, extreme weather still present challenges.
We propose to use post-hoc interpretability methods to construct relevance weather maps that show the key extreme-weather precursors identified by deep learning models.
We then bin these relevant maps into different multi-year time periods to understand the role that climate change is having on these precursors.
arXiv Detail & Related papers (2025-03-11T08:27:08Z) - Evidential Deep Learning for Probabilistic Modelling of Extreme Storm Events [4.2623421577291225]
Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide confidence about its predictions.
EDL not only reduces computational overhead but also enhances predictive uncertainty.
This method opens up novel opportunities in research areas such as climate risk assessment.
arXiv Detail & Related papers (2024-12-18T17:03:19Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
We introduce the first generalist weather foundation model (WeatherGFM)
It addresses a wide spectrum of weather understanding tasks in a unified manner.
Our model can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing.
arXiv Detail & Related papers (2024-11-08T09:14:19Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
Our study proposes a novel preprocessing method and convolutional autoencoder model to improve the interpretation of synoptic weather maps.
This model could recognize historical synoptic weather maps that nearly match current atmospheric conditions.
arXiv Detail & Related papers (2024-11-08T07:46:50Z) - Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia.
Deep learning methods have been promising for predicting small to medium-sized climate extreme events over a short time horizon.
We present an ensemble-based machine learning approach that addresses large-scale extreme flooding challenges.
arXiv Detail & Related papers (2024-07-20T23:45:04Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Foundation Models for Weather and Climate Data Understanding: A
Comprehensive Survey [39.08108001903514]
We offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data.
Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model, model scopes and applications, and datasets for weather and climate.
arXiv Detail & Related papers (2023-12-05T01:10:54Z) - Improving extreme weather events detection with light-weight neural
networks [0.0]
We modify a light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data.
Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance.
arXiv Detail & Related papers (2023-03-31T23:38:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
Using 1000 years of state-of-the-art PlaSim Planete Simulator Climate Model data, it is shown that Convolutional Neural Network-based Deep Learning frameworks, with large-class undersampling and transfer learning achieve significant performance in forecasting the occurrence of extreme heatwaves.
arXiv Detail & Related papers (2021-03-17T16:10:06Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.