Evidential Deep Learning for Probabilistic Modelling of Extreme Storm Events
- URL: http://arxiv.org/abs/2412.14048v1
- Date: Wed, 18 Dec 2024 17:03:19 GMT
- Title: Evidential Deep Learning for Probabilistic Modelling of Extreme Storm Events
- Authors: Ayush Khot, Xihaier Luo, Ai Kagawa, Shinjae Yoo,
- Abstract summary: Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide confidence about its predictions.
EDL not only reduces computational overhead but also enhances predictive uncertainty.
This method opens up novel opportunities in research areas such as climate risk assessment.
- Score: 4.2623421577291225
- License:
- Abstract: Uncertainty quantification (UQ) methods play an important role in reducing errors in weather forecasting. Conventional approaches in UQ for weather forecasting rely on generating an ensemble of forecasts from physics-based simulations to estimate the uncertainty. However, it is computationally expensive to generate many forecasts to predict real-time extreme weather events. Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide confidence about its predictions using only one forecast. It treats learning as an evidence acquisition process where more evidence is interpreted as increased predictive confidence. We apply EDL to storm forecasting using real-world weather datasets and compare its performance with traditional methods. Our findings indicate that EDL not only reduces computational overhead but also enhances predictive uncertainty. This method opens up novel opportunities in research areas such as climate risk assessment, where quantifying the uncertainty about future climate is crucial.
Related papers
- Uncertainty Quantification of Wind Gust Predictions in the Northeast US: An Evidential Neural Network and Explainable Artificial Intelligence Approach [0.0]
Uncertainty quantification (UQ) identifies when predictions are reliable or needs cautious interpretation.
We introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions.
arXiv Detail & Related papers (2025-02-01T03:50:11Z) - Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts have challenged our approach to numerical weather prediction.
Data-driven systems have been trained to forecast future weather by learning from long historical records of past weather.
We propose a new approach, training a neural network to predict future weather purely from historical observations.
arXiv Detail & Related papers (2024-07-22T12:23:26Z) - Uncertainty quantification for data-driven weather models [0.0]
We study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather.
Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions.
In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results.
arXiv Detail & Related papers (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.