論文の概要: Ultra Dual-Path Compression For Joint Echo Cancellation And Noise
Suppression
- arxiv url: http://arxiv.org/abs/2308.11053v2
- Date: Tue, 10 Oct 2023 06:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 04:41:55.630113
- Title: Ultra Dual-Path Compression For Joint Echo Cancellation And Noise
Suppression
- Title(参考訳): 関節エコーキャンセレーションとノイズ抑制のための超デュアルパス圧縮
- Authors: Hangting Chen, Jianwei Yu, Yi Luo, Rongzhi Gu, Weihua Li, Zhuocheng
Lu, Chao Weng
- Abstract要約: 固定圧縮比の下では、時間と周波数の両方の手法を組み合わせたデュアルパス圧縮により、さらなる性能向上が期待できる。
提案されたモデルは、高速なFullSubNetやDeepNetFilterと比較して、競争力のある性能を示している。
- 参考スコア(独自算出の注目度): 38.09558772881095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echo cancellation and noise reduction are essential for full-duplex
communication, yet most existing neural networks have high computational costs
and are inflexible in tuning model complexity. In this paper, we introduce
time-frequency dual-path compression to achieve a wide range of compression
ratios on computational cost. Specifically, for frequency compression,
trainable filters are used to replace manually designed filters for dimension
reduction. For time compression, only using frame skipped prediction causes
large performance degradation, which can be alleviated by a post-processing
network with full sequence modeling. We have found that under fixed compression
ratios, dual-path compression combining both the time and frequency methods
will give further performance improvement, covering compression ratios from 4x
to 32x with little model size change. Moreover, the proposed models show
competitive performance compared with fast FullSubNet and DeepFilterNet.
- Abstract(参考訳): エコーキャンセレーションとノイズ低減は全二重通信に不可欠であるが、既存のニューラルネットワークの多くは高い計算コストを持ち、モデルの複雑さのチューニングには柔軟性がない。
本稿では,時間周波数デュアルパス圧縮を導入し,計算コストに対する圧縮比を広範囲に設定する。
具体的には、周波数圧縮のために、トレーニング可能なフィルタを使用して、手動で設計したフィルタを寸法縮小のために置き換える。
時間圧縮では、フレームスキップ予測のみを用いることで性能が大幅に低下し、完全なシーケンスモデリングを備えた後処理ネットワークによって軽減される。
固定圧縮比では,時間法と周波数法の両方を組み合わせたデュアルパス圧縮により,モデルサイズの変化が少なく,圧縮比が4倍から32倍まで,さらに性能が向上することがわかった。
さらに,提案手法は高速フルサブネットとdeepfilternetと比較して競合性能を示す。
関連論文リスト
- ZipNN: Lossless Compression for AI Models [10.111136691015554]
ZipNNはニューラルネットワークに適した無損失圧縮を提供する。
一般的なモデル(例えばLlama 3)では、ZipNNはバニラ圧縮よりも17%以上良いスペース節約を示している。
これらの手法は、Hugging Faceのような大きなモデルハブからダウンロードされたネットワークトラフィックを1ヶ月に1つ以上節約できると見積もっている。
論文 参考訳(メタデータ) (2024-11-07T23:28:23Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) は、1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルである。
FCGSは圧縮比を20倍以上に向上し、高精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
論文 参考訳(メタデータ) (2024-10-10T15:13:08Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
本稿では,無損失圧縮と無損失圧縮を統一的に組み合わせた後学習モデルサイズ圧縮法を提案する。
精度を犠牲にすることなく安定な10times$圧縮比を達成でき、短時間で20times$圧縮比を小さくすることができる。
論文 参考訳(メタデータ) (2023-08-08T14:10:16Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
分散データ並列(DDP)トレーニングは、複数のデバイスがデータのサブセットをトレーニングし、アップデートを集約してグローバルに共有するモデルを生成することにより、アプリケーション全体のスループットを向上させる。
GraVACは、モデル進捗を評価し、圧縮に関連する情報損失を評価することで、トレーニング全体を通して圧縮係数を動的に調整するフレームワークである。
静的圧縮係数を使用するのとは対照的に、GraVACはResNet101、VGG16、LSTMのエンドツーエンドのトレーニング時間をそれぞれ4.32x、1.95x、6.67x削減する。
論文 参考訳(メタデータ) (2023-05-20T14:25:17Z) - Unrolled Compressed Blind-Deconvolution [77.88847247301682]
sparse multi channel blind deconvolution (S-MBD) はレーダー/ソナー/超音波イメージングなどの多くの工学的応用で頻繁に発生する。
そこで本研究では,受信した全信号に対して,はるかに少ない測定値からブラインドリカバリを可能にする圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-09-28T15:16:58Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Conditional Automated Channel Pruning for Deep Neural Networks [22.709646484723876]
任意の圧縮率を入力とし、対応する圧縮モデルを出力する条件付きモデルを開発する。
実験では、圧縮率が異なる結果のモデルは、既存の方法で圧縮されたモデルよりも一貫して優れていた。
論文 参考訳(メタデータ) (2020-09-21T09:55:48Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。