論文の概要: Fast Feedforward 3D Gaussian Splatting Compression
- arxiv url: http://arxiv.org/abs/2410.08017v2
- Date: Fri, 11 Oct 2024 14:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:55:13.985424
- Title: Fast Feedforward 3D Gaussian Splatting Compression
- Title(参考訳): 高速フィードフォワード3次元ガウス平滑化圧縮
- Authors: Yihang Chen, Qianyi Wu, Mengyao Li, Weiyao Lin, Mehrtash Harandi, Jianfei Cai,
- Abstract要約: 3D Gaussian Splatting (FCGS) は、1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルである。
FCGSは圧縮比を20倍以上に向上し、高精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
- 参考スコア(独自算出の注目度): 55.149325473447384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With 3D Gaussian Splatting (3DGS) advancing real-time and high-fidelity rendering for novel view synthesis, storage requirements pose challenges for their widespread adoption. Although various compression techniques have been proposed, previous art suffers from a common limitation: for any existing 3DGS, per-scene optimization is needed to achieve compression, making the compression sluggish and slow. To address this issue, we introduce Fast Compression of 3D Gaussian Splatting (FCGS), an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass, which significantly reduces compression time from minutes to seconds. To enhance compression efficiency, we propose a multi-path entropy module that assigns Gaussian attributes to different entropy constraint paths for balance between size and fidelity. We also carefully design both inter- and intra-Gaussian context models to remove redundancies among the unstructured Gaussian blobs. Overall, FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods. Our code is available at: https://github.com/YihangChen-ee/FCGS.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新しいビュー合成のためのリアルタイムかつ高忠実なレンダリングを推し進めているため、ストレージ要件は広く採用される上で課題となる。
様々な圧縮技術が提案されているが、既存の3DGSでは圧縮を実現するためにシーンごとの最適化が必要であり、圧縮が緩やかで遅くなる。
この問題を解決するために,1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルであるFCGS(Fast Compression of 3D Gaussian Splatting)を導入し,圧縮時間を数分から秒に短縮する。
圧縮効率を向上させるために,ガウス属性を異なるエントロピー制約経路に割り当てるマルチパスエントロピーモジュールを提案する。
また,非構造ガウス系ブロブの冗長性を取り除くために,ガウス系コンテキストモデルとガウス系コンテキストモデルの両方を慎重に設計する。
全体として、FCGSは圧縮比を20倍以上に向上し、精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
私たちのコードは、https://github.com/YihangChen-ee/FCGS.comで利用可能です。
関連論文リスト
- HAC++: Towards 100X Compression of 3D Gaussian Splatting [55.6351304553003]
3D Gaussian Splatting (3DGS)は、新しいビュー合成のための有望なフレームワークとして登場し、高速レンダリング速度と高忠実さを誇っている。
しかし、ガウスの点雲(あるいは論文のアンカー)のスパースで非組織的な性質は、圧縮の課題を提起している。
本研究では,非組織型アンカーと構造化ハッシュグリッドの関係を利用したHAC++を提案する。
論文 参考訳(メタデータ) (2025-01-21T16:23:05Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
時間圧縮3Dガウススティング(TC3DGS)は動的3Dガウス表現を圧縮する新しい技術である。
複数のデータセットにまたがる実験により、T3DGSは最大67$times$圧縮を実現し、視覚的品質の劣化を最小限に抑えることができた。
論文 参考訳(メタデータ) (2024-12-07T17:03:09Z) - A Hierarchical Compression Technique for 3D Gaussian Splatting Compression [23.785131033155924]
3D Gaussian Splatting (GS) は、新規なビュー合成において優れたレンダリング品質と生成速度を示す。
現在の3D GS圧縮研究は主によりコンパクトなシーン表現の開発に焦点を当てている。
本稿では,このギャップに対処する階層型GS圧縮(HGSC)手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T13:34:24Z) - ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model [77.71796503321632]
我々は3DGS表現のアンカーレベルにコンテキストモデルを導入し,バニラ3DGSと比較して100倍以上のサイズの縮小を実現した。
我々の研究は3DGS表現のためのアンカーレベルのコンテキストモデルを開拓し、バニラ3DGSに比べて100倍以上、そして最新の最先端のScaffold-GSに比べて15倍の大幅なサイズ縮小を実現した。
論文 参考訳(メタデータ) (2024-05-31T09:23:39Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) は、新しいビュー合成のための有望なフレームワークとして登場した。
高速な3DGS表現のためのHash-grid Assisted Context (HAC) フレームワークを提案する。
私たちの研究は、コンテキストベースの3DGS表現の圧縮を探求するパイオニアです。
論文 参考訳(メタデータ) (2024-03-21T16:28:58Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z) - GAN Slimming: All-in-One GAN Compression by A Unified Optimization
Framework [94.26938614206689]
本稿では,GANスライミング(GAN Slimming)と呼ばれる,GAN圧縮のための複数の圧縮手段を組み合わせた最初の統一最適化フレームワークを提案する。
我々はGSを用いて、最先端のトランスファーネットワークであるCartoonGANを最大47倍圧縮し、視覚的品質を最小限に抑える。
論文 参考訳(メタデータ) (2020-08-25T14:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。