Topological Graph Signal Compression
- URL: http://arxiv.org/abs/2308.11068v2
- Date: Tue, 5 Dec 2023 13:42:53 GMT
- Title: Topological Graph Signal Compression
- Authors: Guillermo Bern\'ardez, Lev Telyatnikov, Eduard Alarc\'on, Albert
Cabellos-Aparicio, Pere Barlet-Ros, Pietro Li\`o
- Abstract summary: We propose a novel TDL-based method for compressing signals over graphs.
Our results show that our framework improves both standard GNN and feed-forward architectures.
- Score: 7.836468889756101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently emerged Topological Deep Learning (TDL) methods aim to extend
current Graph Neural Networks (GNN) by naturally processing higher-order
interactions, going beyond the pairwise relations and local neighborhoods
defined by graph representations. In this paper we propose a novel TDL-based
method for compressing signals over graphs, consisting in two main steps:
first, disjoint sets of higher-order structures are inferred based on the
original signal --by clustering $N$ datapoints into $K\ll N$ collections; then,
a topological-inspired message passing gets a compressed representation of the
signal within those multi-element sets. Our results show that our framework
improves both standard GNN and feed-forward architectures in compressing
temporal link-based signals from two real-word Internet Service Provider
Networks' datasets --from $30\%$ up to $90\%$ better reconstruction errors
across all evaluation scenarios--, suggesting that it better captures and
exploits spatial and temporal correlations over the whole graph-based network
structure.
Related papers
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Text Enriched Sparse Hyperbolic Graph Convolutional Networks [21.83127488157701]
Graph Neural Networks (GNNs) and their hyperbolic variants provide a promising approach to encode such networks in a low-dimensional latent space.
We propose Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN) to capture the graph's metapath structures using semantic signals.
Our model outperforms the current state-of-the-art approaches by a large margin on the task of link prediction.
arXiv Detail & Related papers (2022-07-06T00:23:35Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - BiTe-GCN: A New GCN Architecture via BidirectionalConvolution of
Topology and Features on Text-Rich Networks [44.74164340799386]
BiTe-GCN is a novel GCN architecture with bidirectional convolution of both topology and features on text-rich networks.
Our new architecture outperforms state-of-the-art by a breakout improvement.
This architecture can also be applied to several e-commerce searching scenes such as JD searching.
arXiv Detail & Related papers (2020-10-23T04:38:30Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
Graph convolutional networks (GCNs) have been widely used for representation learning on graph data.
In many graph classification applications, GCN-based approaches have outperformed traditional methods.
We propose a locality-preserving dense GCN with graph context-aware node representations.
arXiv Detail & Related papers (2020-10-12T02:12:27Z) - Shift Aggregate Extract Networks [3.3263205689999453]
We introduce an architecture based on deep hierarchical decompositions to learn effective representations of large graphs.
Our framework extends classic R-decompositions used in kernel methods, enabling nested part-of-part relations.
We show empirically that our approach is able to outperform current state-of-the-art graph classification methods on large social network datasets.
arXiv Detail & Related papers (2017-03-16T09:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.