Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations
- URL: http://arxiv.org/abs/2010.05404v1
- Date: Mon, 12 Oct 2020 02:12:27 GMT
- Title: Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations
- Authors: Wenfeng Liu, Maoguo Gong, Zedong Tang, A. K. Qin
- Abstract summary: Graph convolutional networks (GCNs) have been widely used for representation learning on graph data.
In many graph classification applications, GCN-based approaches have outperformed traditional methods.
We propose a locality-preserving dense GCN with graph context-aware node representations.
- Score: 19.623379678611744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) have been widely used for representation
learning on graph data, which can capture structural patterns on a graph via
specifically designed convolution and readout operations. In many graph
classification applications, GCN-based approaches have outperformed traditional
methods. However, most of the existing GCNs are inefficient to preserve local
information of graphs -- a limitation that is especially problematic for graph
classification. In this work, we propose a locality-preserving dense GCN with
graph context-aware node representations. Specifically, our proposed model
incorporates a local node feature reconstruction module to preserve initial
node features into node representations, which is realized via a simple but
effective encoder-decoder mechanism. To capture local structural patterns in
neighbourhoods representing different ranges of locality, dense connectivity is
introduced to connect each convolutional layer and its corresponding readout
with all previous convolutional layers. To enhance node representativeness, the
output of each convolutional layer is concatenated with the output of the
previous layer's readout to form a global context-aware node representation. In
addition, a self-attention module is introduced to aggregate layer-wise
representations to form the final representation. Experiments on benchmark
datasets demonstrate the superiority of the proposed model over
state-of-the-art methods in terms of classification accuracy.
Related papers
- Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
Graph neural networks (GNNs) have shown great success in learning from graph-based data.
The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood.
We propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by information from local neighbourhood.
arXiv Detail & Related papers (2024-05-08T01:51:19Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - Non-Recursive Graph Convolutional Networks [33.459371861932574]
We propose a novel architecture named Non-Recursive Graph Convolutional Network (NRGCN) to improve both the training efficiency and the learning performance of GCNs.
NRGCN represents different hops of neighbors for each node based on inner-layer aggregation and layer-independent sampling.
In this way, each node can be directly represented by concatenating the information extracted independently from each hop of its neighbors.
arXiv Detail & Related papers (2021-05-09T08:12:18Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.