論文の概要: LLaMA-Reviewer: Advancing Code Review Automation with Large Language
Models through Parameter-Efficient Fine-Tuning
- arxiv url: http://arxiv.org/abs/2308.11148v2
- Date: Tue, 5 Sep 2023 02:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 03:05:58.311690
- Title: LLaMA-Reviewer: Advancing Code Review Automation with Large Language
Models through Parameter-Efficient Fine-Tuning
- Title(参考訳): LLaMA-Reviewer:パラメータ効率の良いファインチューニングによる大規模言語モデルによるコードレビューの自動化
- Authors: Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, Chun Zuo
- Abstract要約: LLaMA-Reviewerは、コードレビューの領域において、人気のあるLLMであるLLaMAの機能を活用する革新的なフレームワークである。
このフレームワークはパラメータ効率のよい微調整(PEFT)方式を採用し、トレーニング可能なパラメータの1%未満を使用しながら高い性能を実現する。
この分野での継続的な進歩を促進するために、コードとすべてのPEFT軽量プラグインがオープンソース化された。
- 参考スコア(独自算出の注目度): 13.616908697637665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automation of code review activities, a long-standing pursuit in software
engineering, has been primarily addressed by numerous domain-specific
pre-trained models. Despite their success, these models frequently demand
extensive resources for pre-training from scratch. In contrast, Large Language
Models (LLMs) provide an intriguing alternative, given their remarkable
capabilities when supplemented with domain-specific knowledge. However, their
potential for automating code review tasks remains largely unexplored.
In response to this research gap, we present LLaMA-Reviewer, an innovative
framework that leverages the capabilities of LLaMA, a popular LLM, in the realm
of code review. Mindful of resource constraints, this framework employs
parameter-efficient fine-tuning (PEFT) methods, delivering high performance
while using less than 1% of trainable parameters.
An extensive evaluation of LLaMA-Reviewer is conducted on two diverse,
publicly available datasets. Notably, even with the smallest LLaMA base model
consisting of 6.7B parameters and a limited number of tuning epochs,
LLaMA-Reviewer equals the performance of existing code-review-focused models.
The ablation experiments provide insights into the influence of various
fine-tuning process components, including input representation, instruction
tuning, and different PEFT methods. To foster continuous progress in this
field, the code and all PEFT-weight plugins have been made open-source.
- Abstract(参考訳): ソフトウェア工学における長年の追求であるコードレビュー活動の自動化は、主に多くのドメイン固有の事前訓練モデルによって対処されてきた。
その成功にもかかわらず、これらのモデルはしばしばスクラッチから事前訓練するための広範囲なリソースを要求する。
対照的に、Large Language Models (LLMs) は、ドメイン固有の知識を補足する際、その優れた能力を考えると、興味深い代替手段を提供する。
しかし、コードレビュータスクを自動化する可能性はほとんど調査されていない。
この研究のギャップに対応するために、コードレビューの領域において、人気のあるLLMであるLLaMAの機能を活用する革新的なフレームワークであるLLaMA-Reviewerを紹介します。
リソース制約を念頭に置いて、このフレームワークはパラメータ効率の細かいチューニング(peft)メソッドを採用し、トレーニング可能なパラメータの1%未満を使用して高いパフォーマンスを提供する。
LLaMA-Reviewerの広範な評価は、2つの多様な公開データセットに対して行われる。
特に、6.7Bパラメータと限られたチューニングエポック数からなる最小のLLaMAベースモデルであっても、LLaMA-Reviewerは既存のコードレビューに焦点を当てたモデルの性能と同等である。
アブレーション実験は、入力表現、命令チューニング、異なるPEFTメソッドを含む様々な微調整プロセスコンポーネントの影響についての洞察を提供する。
この分野での継続的な進歩を促進するために、コードとすべてのPEFT軽量プラグインがオープンソース化された。
関連論文リスト
- Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instructは60,000以上の高品質QAペアのデータセットである。
LiveAoPSBenchは、最新のフォーラムデータから派生したタイムスタンプによる進化的評価セットである。
我々の研究は、高度な数学推論のための大規模で高品質なデータセットの作成と維持にスケーラブルなアプローチを提示している。
論文 参考訳(メタデータ) (2025-01-24T06:39:38Z) - FDM-Bench: A Comprehensive Benchmark for Evaluating Large Language Models in Additive Manufacturing Tasks [2.473350840334717]
複雑なパラメータの管理とFused Deposition Modelingにおける印刷欠陥の解決は依然として困難である。
大きな言語モデル(LLM)は、FDMにおけるこれらの課題に対処する可能性を提供します。
FDM-Benchは、FDM固有のタスク上でLLMを評価するために設計されたベンチマークデータセットである。
論文 参考訳(メタデータ) (2024-12-13T03:16:14Z) - Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study [3.5189934649278922]
GitHub Copilotのような大規模言語モデル(LLM)は、微調整なしで現実世界のタスクに苦労する。
本稿では,LoRA, (IA)3, およびプロンプトチューニングを含む各種PEFT法について検討する。
その結果,PEFT法は単体テスト生成のための完全微調整に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-04T09:03:18Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Investigating Automatic Scoring and Feedback using Large Language Models [46.1232919707345]
本稿では,PEFTに基づく量子化モデルの有効性について検討する。
その結果, 微調整LDMによる評価は精度が高く, 平均的に3%未満の誤差が得られた。
論文 参考訳(メタデータ) (2024-05-01T16:13:54Z) - An empirical study of LLaMA3 quantization: from LLMs to MLLMs [54.91212829143966]
LLaMAファミリーは、最も強力なオープンソースの大規模言語モデル(LLM)の1つである。
LLaMA3モデルは、15T以上のデータに対する超大規模事前トレーニングによって、様々な領域で優れたパフォーマンスを実現している。
我々は,LLaMA3の1-8ビットおよび様々なデータセット上で,LLaMA3の学習後量子化とLoRA微調整(LoRA-FT)の10種類の既存手法を評価し,LLaMA3の低ビット量子化性能を明らかにする。
論文 参考訳(メタデータ) (2024-04-22T10:03:03Z) - Automating Patch Set Generation from Code Review Comments Using Large Language Models [2.045040820541428]
5つの人気のあるLarge Language Model(LLM)にコードコンテキストを提供します。
実世界のコードレビューコメントから提案したコード変更(パッチセット)を得る。
生成したパッチセットを人為的なパッチセットの履歴データと比較することにより、各モデルの性能を慎重に評価する。
論文 参考訳(メタデータ) (2024-04-10T02:46:08Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
パラメータ効率のよい微調整(PEFT)は、大規模言語モデル(LLM)をタスク固有のデータに効率的に専門化するための有望なアプローチである。
本研究は,PEFTと量子化を組み合わせることで,より大きなLCMをチューニングし,メモリ使用量を大幅に削減する可能性を明らかにする。
論文 参考訳(メタデータ) (2023-08-21T04:31:06Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。