論文の概要: Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
- arxiv url: http://arxiv.org/abs/2308.11295v3
- Date: Tue, 17 Sep 2024 09:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 13:27:52.473766
- Title: Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
- Title(参考訳): 注意行列のトポロジカル解析による変圧器の予測の不確かさの推定
- Authors: Elizaveta Kostenok, Daniil Cherniavskii, Alexey Zaytsev,
- Abstract要約: トランスフォーマーベースの言語モデルは、幅広いNLPタスクに新しいベンチマークを設定している。
予測の不確実性を確実に見積もるのは 重要な課題です
モデル信頼度を評価するために,複数の頭部・層にまたがるアテンションマップの幾何学的特徴を活用することで,これらの制約に対処する。
提案手法は,アクセプタビリティ判定と人工テキスト検出のためのベンチマークにおいて,既存の不確実性推定手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 3.1466086042810884
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Transformer-based language models have set new benchmarks across a wide range of NLP tasks, yet reliably estimating the uncertainty of their predictions remains a significant challenge. Existing uncertainty estimation (UE) techniques often fall short in classification tasks, either offering minimal improvements over basic heuristics or relying on costly ensemble models. Moreover, attempts to leverage common embeddings for UE in linear probing scenarios have yielded only modest gains, indicating that alternative model components should be explored. We tackle these limitations by harnessing the geometry of attention maps across multiple heads and layers to assess model confidence. Our approach extracts topological features from attention matrices, providing a low-dimensional, interpretable representation of the model's internal dynamics. Additionally, we introduce topological features to compare attention patterns across heads and layers. Our method significantly outperforms existing UE techniques on benchmarks for acceptability judgments and artificial text detection, offering a more efficient and interpretable solution for uncertainty estimation in large-scale language models.
- Abstract(参考訳): トランスフォーマーベースの言語モデルは、幅広いNLPタスクに新しいベンチマークを設定しているが、その予測の不確かさを確実に推定することは大きな課題である。
既存の不確実性推定(UE)技術は、基本的なヒューリスティックよりも最小限の改善を提供するか、高価なアンサンブルモデルに依存するか、分類タスクにおいて不足することが多い。
さらに、線形探索シナリオにおけるUEの共通埋め込みを利用する試みは、わずかに利得しか得られず、代替モデルコンポーネントを探索すべきであることを示している。
モデル信頼度を評価するために,複数の頭部・層にまたがるアテンションマップの幾何学的特徴を活用することで,これらの制約に対処する。
提案手法は,注意行列から位相的特徴を抽出し,モデルの内部力学の低次元的解釈可能な表現を提供する。
さらに,頭部と層間の注意パターンを比較するためのトポロジ的特徴を導入する。
提案手法は,アクセプタビリティ判定と人工テキスト検出のベンチマークにおいて,既存のUE手法よりも優れた性能を示し,大規模言語モデルにおける不確実性評価のための,より効率的かつ解釈可能なソリューションを提供する。
関連論文リスト
- Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
自然言語推論(NLI)の未探索課題に注目点を当てた。
我々は、広範囲な実験を通じて、モデルに依存しない防衛戦略として、自然言語説明の使用を検証した。
本研究では,広範に使用されている言語生成指標と人間の知覚との相関について検討し,それらが堅牢なNLIモデルへのプロキシとして機能するようにした。
論文 参考訳(メタデータ) (2024-09-11T17:09:49Z) - PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis [14.526536510805755]
本稿では,この急速に発展する分野におけるベンチマークの標準化を目的として,単一細胞における摂動の影響を予測するための包括的なフレームワークを提案する。
当社のフレームワークであるPerturBenchには、ユーザフレンドリなプラットフォーム、多様なデータセット、フェアモデル比較のためのメトリクス、詳細なパフォーマンス分析が含まれています。
論文 参考訳(メタデータ) (2024-08-20T07:40:20Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
本稿では,BEVセグメンテーションにおける予測不確実性定量化のためのベンチマークを提案する。
誤分類および非分布画素の識別における予測不確実性の有効性と校正に焦点が当てられている。
本研究では,不均衡なデータに対する不確実性-局所-クロス-エントロピー損失を提案し,セグメンテーションの品質とキャリブレーションを継続的に改善する。
論文 参考訳(メタデータ) (2024-05-31T16:32:46Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
固定テストセットは、可能なデータバリエーションのごく一部しかキャプチャできないため、制限され、新しい過度なソリューションを生成する傾向にある、と私たちは主張する。
これらの欠点を克服するために、学習した特徴空間の構造から直接モデルのロバスト性を推定することを提案する。
論文 参考訳(メタデータ) (2021-06-23T10:52:29Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。