論文の概要: Towards an Understanding of Large Language Models in Software Engineering Tasks
- arxiv url: http://arxiv.org/abs/2308.11396v2
- Date: Sun, 29 Sep 2024 08:00:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:58.617386
- Title: Towards an Understanding of Large Language Models in Software Engineering Tasks
- Title(参考訳): ソフトウェア工学における大規模言語モデルの理解に向けて
- Authors: Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Yanlin Wang, Wenqing Chen, Lianghong Guo, Weicheng Wang,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
- 参考スコア(独自算出の注目度): 29.30433406449331
- License:
- Abstract: Large Language Models (LLMs) have drawn widespread attention and research due to their astounding performance in text generation and reasoning tasks. Derivative products, like ChatGPT, have been extensively deployed and highly sought after. Meanwhile, the evaluation and optimization of LLMs in software engineering tasks, such as code generation, have become a research focus. However, there is still a lack of systematic research on applying and evaluating LLMs in software engineering. Therefore, this paper comprehensively investigate and collate the research and products combining LLMs with software engineering, aiming to answer two questions: (1) What are the current integrations of LLMs with software engineering? (2) Can LLMs effectively handle software engineering tasks? To find the answers, we have collected related literature as extensively as possible from seven mainstream databases and selected 123 timely papers published starting from 2022 for analysis. We have categorized these papers in detail and reviewed the current research status of LLMs from the perspective of seven major software engineering tasks, hoping this will help researchers better grasp the research trends and address the issues when applying LLMs. Meanwhile, we have also organized and presented papers with evaluation content to reveal the performance and effectiveness of LLMs in various software engineering tasks, guiding researchers and developers to optimize.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
ChatGPTのような派生製品は広範囲にデプロイされ、追求されている。
一方、コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
しかし、ソフトウェア工学におけるLLMの適用と評価に関する体系的な研究はいまだに存在しない。
そこで本研究では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討し,(1)ソフトウェア工学とLLMの現在の統合はどのようなものか,という2つの疑問に答える。
2) LLM はソフトウェア工学のタスクを効果的に扱えるか?
そこで本研究では,7つの主流データベースから可能な限り関連文献を収集し,2022年から123のタイムリーな論文を抽出して分析を行った。
我々は、これらの論文を詳細に分類し、7つの主要なソフトウェアエンジニアリングタスクの観点から、LLMの現在の研究状況についてレビューし、このことが研究者が研究動向をよりよく把握し、LLMを適用する際の問題に対処するのに役立つことを期待している。
また,ソフトウェアエンジニアリングタスクにおけるLLMの性能と有効性を明らかにするために,評価内容に関する論文を整理,提示し,研究者や開発者の最適化を指導している。
関連論文リスト
- When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
本稿では,大規模言語モデルと検索エンジンの統合が,両者の相互に利益をもたらすかどうかを詳細に検討する。
LLM(Search4LLM)の改良と,LLM(LLM4Search)を用いた検索エンジン機能の向上という,2つの主要な領域に注目した。
論文 参考訳(メタデータ) (2024-06-28T03:52:13Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
Benchは、大規模言語モデルに対して、139のライブラリと7つのドメインから1,140のきめ細かいプログラミングタスクのためのツールとして、複数の関数呼び出しを実行するためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - A Software Engineering Perspective on Testing Large Language Models: Research, Practice, Tools and Benchmarks [2.8061460833143346]
大規模言語モデル(LLM)は、スタンドアロンツールとしても、現在および将来のソフトウェアシステムのコンポーネントとしても、急速に普及しています。
LLMを2030年のハイテイクシステムや安全クリティカルシステムで使用するためには、厳格なテストを実施する必要がある。
論文 参考訳(メタデータ) (2024-06-12T13:45:45Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
本研究では,大規模言語モデル(LLM)を,大学院生や大学院生が高度なコンピューティングクラスにおけるプログラミング課題に活用することを検討した。
インド大学の分散システムクラスから411名の学生を対象に,総合的な分析を行った。
論文 参考訳(メタデータ) (2024-04-06T12:06:56Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Large Language Models for Software Engineering: Survey and Open Problems [35.29302720251483]
本稿では,ソフトウェア工学(SE)におけるLarge Language Models(LLMs)の新しい領域について調査する。
本調査では,ハイブリッド技術(従来のSE+LLM)が,信頼性,効率,効率のよいLLMベースのSEの開発と展開において果たすべき重要な役割を明らかにした。
論文 参考訳(メタデータ) (2023-10-05T13:33:26Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。