PoseGraphNet++: Enriching 3D Human Pose with Orientation Estimation
- URL: http://arxiv.org/abs/2308.11440v2
- Date: Fri, 10 May 2024 13:21:44 GMT
- Title: PoseGraphNet++: Enriching 3D Human Pose with Orientation Estimation
- Authors: Soubarna Banik, Edvard Avagyan, Sayantan Auddy, Alejandro Mendoza Gracia, Alois Knoll,
- Abstract summary: Existing skeleton-based 3D human pose estimation methods only predict joint positions.
We present PoseGraphNet++, a novel 2D-to-3D lifting Graph Convolution Network that predicts the complete human pose in 3D.
- Score: 43.261111977510105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing skeleton-based 3D human pose estimation methods only predict joint positions. Although the yaw and pitch of bone rotations can be derived from joint positions, the roll around the bone axis remains unresolved. We present PoseGraphNet++ (PGN++), a novel 2D-to-3D lifting Graph Convolution Network that predicts the complete human pose in 3D including joint positions and bone orientations. We employ both node and edge convolutions to utilize the joint and bone features. Our model is evaluated on multiple datasets using both position and rotation metrics. PGN++ performs on par with the state-of-the-art (SoA) on the Human3.6M benchmark. In generalization experiments, it achieves the best results in position and matches the SoA in orientation, showcasing a more balanced performance than the current SoA. PGN++ exploits the mutual relationship of joints and bones resulting in significantly \SB{improved} position predictions, as shown by our ablation results.
Related papers
- Improving 3D Pose Estimation for Sign Language [38.20064386142944]
This work addresses 3D human pose reconstruction in single images.
We present a method that combines Forward Kinematics (FK) with neural networks to ensure a fast and valid prediction of 3D pose.
arXiv Detail & Related papers (2023-08-18T13:05:10Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
We decompose the task into two stages, i.e. person localization and pose estimation.
And we propose three task-specific graph neural networks for effective message passing.
Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets.
arXiv Detail & Related papers (2021-09-13T11:44:07Z) - 3D Human Pose Regression using Graph Convolutional Network [68.8204255655161]
We propose a graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses.
Our model's performance is close to the state-of-the-art, but with much fewer parameters.
arXiv Detail & Related papers (2021-05-21T14:41:31Z) - Beyond Weak Perspective for Monocular 3D Human Pose Estimation [6.883305568568084]
We consider the task of 3D joints location and orientation prediction from a monocular video.
We first infer 2D joints locations with an off-the-shelf pose estimation algorithm.
We then adhere to the SMPLify algorithm which receives those initial parameters.
arXiv Detail & Related papers (2020-09-14T16:23:14Z) - HDNet: Human Depth Estimation for Multi-Person Camera-Space Localization [83.57863764231655]
We propose the Human Depth Estimation Network (HDNet), an end-to-end framework for absolute root joint localization.
A skeleton-based Graph Neural Network (GNN) is utilized to propagate features among joints.
We evaluate our HDNet on the root joint localization and root-relative 3D pose estimation tasks with two benchmark datasets.
arXiv Detail & Related papers (2020-07-17T12:44:23Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs.
It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space.
The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset.
arXiv Detail & Related papers (2020-03-25T00:26:54Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.