G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model
- URL: http://arxiv.org/abs/2308.11573v2
- Date: Wed, 24 Apr 2024 10:09:46 GMT
- Title: G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model
- Authors: Zhijian Qiao, Zehuan Yu, Binqian Jiang, Huan Yin, Shaojie Shen,
- Abstract summary: This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds.
In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives.
We present a distrust-and-verify scheme based on a Pyramid Graph for Global Registration.
- Score: 21.189016878269104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives, including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is represented as a unified Gaussian Ellipsoid Model (GEM), using a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Then, we solve multiple maximum cliques (MAC) for each level of the pyramid graph, thus generating the corresponding transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The algorithm's performance is validated on three publicly available datasets and a self-collected multi-session dataset. Parameter settings remained unchanged during the experiment evaluations. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other registration frameworks to enhance their efficacy. Code: https://github.com/HKUST-Aerial-Robotics/G3Reg
Related papers
- Molecular Topological Profile (MOLTOP) -- Simple and Strong Baseline for Molecular Graph Classification [0.0]
We revisit the effectiveness of topological descriptors for molecular graph classification and design a simple, yet strong baseline.
We demonstrate that a simple approach to feature engineering can establish a strong baseline for Graph Neural Networks (GNNs)
The novel algorithm, Molecular Topological Profile (MOLTOP), integrates Edge Betweenness Centrality, Adjusted Rand Index and SCAN Structural Similarity score.
arXiv Detail & Related papers (2024-07-16T19:45:34Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - Generative and Contrastive Paradigms Are Complementary for Graph
Self-Supervised Learning [56.45977379288308]
Masked autoencoder (MAE) learns to reconstruct masked graph edges or node features.
Contrastive Learning (CL) maximizes the similarity between augmented views of the same graph.
We propose graph contrastive masked autoencoder (GCMAE) framework to unify MAE and CL.
arXiv Detail & Related papers (2023-10-24T05:06:06Z) - Pyramid Semantic Graph-based Global Point Cloud Registration with Low
Overlap [27.362946585463824]
Global point cloud registration is essential in many robotics tasks like loop closing and relocalization.
Unfortunately, the registration often suffers from the low overlap between point clouds.
In this paper, we propose a robust framework to address the problem of point registration with low overlap.
arXiv Detail & Related papers (2023-07-22T16:05:23Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Robust Partial-to-Partial Point Cloud Registration in a Full Range [12.86951061306046]
We propose Graph Matching Consensus Network (GMCNet), which estimates pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud Registration (PPR)
GMCNet encodes point descriptors for each point cloud individually without using crosscontextual information, or ground truth correspondences for training.
arXiv Detail & Related papers (2021-11-30T17:56:24Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.