論文の概要: Deep learning-based flow disaggregation for hydropower plant management
- arxiv url: http://arxiv.org/abs/2308.11631v1
- Date: Fri, 11 Aug 2023 10:52:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-27 04:45:30.060926
- Title: Deep learning-based flow disaggregation for hydropower plant management
- Title(参考訳): 深層学習に基づく水力植物管理のためのフロー分散
- Authors: Duo Zhang
- Abstract要約: 現在、ノルウェーの水力発電所のほとんどで、日々の解像度データのみが利用可能である。
日次データの欠如に対処するため、時系列のデアグリゲーションは潜在的なツールである。
- 参考スコア(独自算出の注目度): 2.4874453414078896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High temporal resolution data is a vital resource for hydropower plant
management. Currently, only daily resolution data are available for most of
Norwegian hydropower plant, however, to achieve more accurate management,
sub-daily resolution data are often required. To deal with the wide absence of
sub-daily data, time series disaggregation is a potential tool. In this study,
we proposed a time series disaggregation model based on deep learning, the
model is tested using flow data from a Norwegian flow station, to disaggregate
the daily flow into hourly flow. Preliminary results show some promising
aspects for the proposed model.
- Abstract(参考訳): 高時間分解能データは水力発電所管理に不可欠な資源である。
現在、ノルウェーのほとんどの水力発電所では日次分解能データのみが利用可能であるが、より正確な管理を達成するためには、日次分解能データを必要とすることが多い。
日次データの欠如に対処するため、時系列のデアグリゲーションは潜在的なツールである。
本研究では,ノルウェーのフローステーションからのフローデータを用いて,深層学習に基づく時系列分散モデルを提案し,毎日のフローを時間単位のフローに分解する。
予備結果は,提案モデルに有望な側面を示す。
関連論文リスト
- Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
本稿では,距離重み付き自己正規化ニューラルネットワーク(DAN)を提案する。これは極性表現学習によって強化されたストラムフローの長距離予測のための新しい極性適応モデルである。
実生活における4つの水文流れデータセットにおいて、DANは、最先端の水文時系列予測法と長期時系列予測のための一般的な方法の両方を著しく上回っていることを実証した。
論文 参考訳(メタデータ) (2023-12-14T09:16:01Z) - Spatiotemporal Transformer for Imputing Sparse Data: A Deep Learning
Approach [19.665820528292798]
本稿では,スパースデータセットの欠落値問題に対処するため,新しいStemporal Transformerモデル(ST-Transformer)を提案する。
このモデルは、自制的なアプローチでトレーニングされており、観察されたデータポイントから欠落した値を自律的に予測することができる。
その効果は、テキサス州の36km×36kmグリッド上のSMAP 1土壌水分データに適用することで実証される。
論文 参考訳(メタデータ) (2023-12-01T22:39:02Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Optimal Reservoir Operations using Long Short-Term Memory Network [3.680403821470857]
リアルタイムの流入予測は、水資源の効率的な運用に役立つ。
本研究では,LSTMに基づく簡易な異常検出アルゴリズムを提案する。
実験はインドのバクラダム貯水池のデータに基づいて行われる。
論文 参考訳(メタデータ) (2021-09-07T18:16:22Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Deep Reinforcement Learning for Long Term Hydropower Production
Scheduling [0.0]
本研究では,水力発電の長期スケジューリングのための戦略として,深層強化学習の利用を検討する。
貯水池への毎週の流入と電力価格に対する年間収入を最適化することを目的としたユースケースを検討する。
提案モデルは,従来の最適化ツールを代替する準備が整っていないが,データリッチな水力スケジューリング分野における強化学習の補完的可能性を示す。
論文 参考訳(メタデータ) (2020-12-09T13:39:09Z) - Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with
Lasso [0.0]
時系列モデルは、典型的な自己回帰、カレンダー、季節効果を捉えるために導入された。
高次元特徴空間が適用され、自動収縮・選択演算子によって効率よく調整される。
この手法は、ドイツの水道供給業者の時給水需要データに適用される。
論文 参考訳(メタデータ) (2020-05-09T22:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。