Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models
- URL: http://arxiv.org/abs/2308.11672v2
- Date: Mon, 15 Apr 2024 10:12:46 GMT
- Title: Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models
- Authors: Florence Bockting, Stefan T. Radev, Paul-Christian Bürkner,
- Abstract summary: We focus on translating domain expert knowledge into corresponding prior distributions over model parameters, a process known as prior elicitation.
A major challenge for existing elicitation methods is how to effectively utilize all of these different formats in order to formulate prior distributions that align with the expert's expectations, regardless of the model structure.
Our results support the claim that our method is largely independent of the underlying model structure and adaptable to various elicitation techniques, including quantile-based, moment-based, and histogram-based methods.
- Score: 2.9172603864294024
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A central characteristic of Bayesian statistics is the ability to consistently incorporate prior knowledge into various modeling processes. In this paper, we focus on translating domain expert knowledge into corresponding prior distributions over model parameters, a process known as prior elicitation. Expert knowledge can manifest itself in diverse formats, including information about raw data, summary statistics, or model parameters. A major challenge for existing elicitation methods is how to effectively utilize all of these different formats in order to formulate prior distributions that align with the expert's expectations, regardless of the model structure. To address these challenges, we develop a simulation-based elicitation method that can learn the hyperparameters of potentially any parametric prior distribution from a wide spectrum of expert knowledge using stochastic gradient descent. We validate the effectiveness and robustness of our elicitation method in four representative case studies covering linear models, generalized linear models, and hierarchical models. Our results support the claim that our method is largely independent of the underlying model structure and adaptable to various elicitation techniques, including quantile-based, moment-based, and histogram-based methods.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
This dissertation focuses on using autoregressive models to answer complex probabilistic queries.
We develop a class of novel and efficient approximation techniques for marginalization in sequential models that are model-agnostic.
arXiv Detail & Related papers (2024-03-06T19:29:08Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Consistency of Empirical Bayes And Kernel Flow For Hierarchical
Parameter Estimation [18.852474191260445]
This paper studies two paradigms of learning hierarchical parameters.
One is from the probabilistic Bayesian perspective, in particular, the empirical Bayes approach.
The other is from the deterministic and approximation theoretic view, and in particular the kernel flow algorithm.
arXiv Detail & Related papers (2020-05-22T20:17:48Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.