User Identity Linkage in Social Media Using Linguistic and Social
Interaction Features
- URL: http://arxiv.org/abs/2308.11684v1
- Date: Tue, 22 Aug 2023 15:10:38 GMT
- Title: User Identity Linkage in Social Media Using Linguistic and Social
Interaction Features
- Authors: Despoina Chatzakou, Juan Soler-Company, Theodora Tsikrika, Leo Wanner,
Stefanos Vrochidis, Ioannis Kompatsiaris
- Abstract summary: User identity linkage aims to reveal social media accounts likely to belong to the same natural person.
This work proposes a machine learning-based detection model, which uses multiple attributes of users' online activity.
The models efficacy is demonstrated on two cases on abusive and terrorism-related Twitter content.
- Score: 11.781485566149994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media users often hold several accounts in their effort to multiply
the spread of their thoughts, ideas, and viewpoints. In the particular case of
objectionable content, users tend to create multiple accounts to bypass the
combating measures enforced by social media platforms and thus retain their
online identity even if some of their accounts are suspended. User identity
linkage aims to reveal social media accounts likely to belong to the same
natural person so as to prevent the spread of abusive/illegal activities. To
this end, this work proposes a machine learning-based detection model, which
uses multiple attributes of users' online activity in order to identify whether
two or more virtual identities belong to the same real natural person. The
models efficacy is demonstrated on two cases on abusive and terrorism-related
Twitter content.
Related papers
- Unsupervised detection of coordinated fake-follower campaigns on social
media [1.3035246321276739]
We present a novel unsupervised detection method designed to target a specific category of malicious accounts.
Our framework identifies anomalous following patterns among all the followers of a social media account.
We find that these detected groups of anomalous followers exhibit consistent behavior across multiple accounts.
arXiv Detail & Related papers (2023-10-31T12:30:29Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Trust and Believe -- Should We? Evaluating the Trustworthiness of
Twitter Users [5.695742189917657]
Fake news on social media is a major problem with far-reaching negative repercussions on both individuals and society.
In this work, we create a model through which we hope to offer a solution that will instill trust in social network communities.
Our model analyses the behaviour of 50,000 politicians on Twitter and assigns an influence score for each evaluated user.
arXiv Detail & Related papers (2022-10-27T06:57:19Z) - Detecting fake accounts through Generative Adversarial Network in online
social media [0.0]
This paper proposes a novel method using user similarity measures and the Generative Adversarial Network (GAN) algorithm to identify fake user accounts in the Twitter dataset.
Despite the problem's complexity, the method achieves an AUC rate of 80% in classifying and detecting fake accounts.
arXiv Detail & Related papers (2022-10-25T10:20:27Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Sockpuppet Detection: a Telegram case study [0.5620334754517148]
In Online Social Networks (OSN) numerous are the cases in which users create multiple accounts that publicly seem to belong to different people but are actually fake identities of the same person.
These fictitious characters can be exploited to carry out abusive behaviors such as manipulating opinions, spreading fake news and disturbing other users.
In our work we focus on Telegram, a wide-spread instant messaging application, often known for its exploitation by members of organized crime and terrorism, and more in general for its high presence of people who have offensive behaviors.
arXiv Detail & Related papers (2021-05-22T19:28:10Z) - Misleading Repurposing on Twitter [3.0254442724635173]
We present the first in-depth and large-scale study of misleading repurposing.
A malicious user changes the identity of their social media account via, among other things, changes to the profile attributes in order to use the account for a new purpose while retaining their followers.
We propose a definition for the behavior and a methodology that uses supervised learning on data mined from the Internet Archive's Twitter Stream Grab to flag repurposed accounts.
arXiv Detail & Related papers (2020-10-20T20:19:01Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.