論文の概要: Invariant representation learning for sequential recommendation
- arxiv url: http://arxiv.org/abs/2308.11728v2
- Date: Mon, 07 Oct 2024 19:45:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 14:01:47.728958
- Title: Invariant representation learning for sequential recommendation
- Title(参考訳): 逐次推薦のための不変表現学習
- Authors: Xiaofan Zhou,
- Abstract要約: シークエンシャルレコメンデーションでは、履歴項目のシーケンスに基づいて、次の項目をユーザに自動的に推奨する。
Irl4Recという新しいシーケンシャルレコメンデーションフレームワークを紹介します。
このフレームワークは、不変学習を活用し、モデルトレーニング中に、スプリアス変数と調整変数の関係を要因とする新しい目的を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sequential recommendation involves automatically recommending the next item to users based on their historical item sequence. While most prior research employs RNN or transformer methods to glean information from the item sequence-generating probabilities for each user-item pair and recommending the top items, these approaches often overlook the challenge posed by spurious relationships. This paper specifically addresses these spurious relations. We introduce a novel sequential recommendation framework named Irl4Rec. This framework harnesses invariant learning and employs a new objective that factors in the relationship between spurious variables and adjustment variables during model training. This approach aids in identifying spurious relations. Comparative analyses reveal that our framework outperforms three typical methods, underscoring the effectiveness of our model. Moreover, an ablation study further demonstrates the critical role our model plays in detecting spurious relations.
- Abstract(参考訳): シークエンシャルレコメンデーションでは、履歴項目のシーケンスに基づいて、次の項目をユーザに自動的に推奨する。
これまでのほとんどの研究では、RNNやトランスフォーマー手法を用いて、各ユーザとイタムペアの項目列生成確率から情報を収集し、上位項目を推奨しているが、これらのアプローチは、しばしば、素早い関係によって引き起こされる課題を見落としている。
本稿ではこれらの突発的な関係について具体的に述べる。
Irl4Recという新しいシーケンシャルレコメンデーションフレームワークを紹介します。
このフレームワークは、不変学習を活用し、モデルトレーニング中に、スプリアス変数と調整変数の関係を要因とする新しい目的を用いる。
このアプローチは、急激な関係を識別するのに役立ちます。
比較分析の結果,我々のフレームワークは3つの典型的な手法より優れており,モデルの有効性が強調されている。
さらに、アブレーション研究は、我々のモデルが突発的な関係を検出する上で重要な役割を担っていることを証明している。
関連論文リスト
- Dual-Channel Multiplex Graph Neural Networks for Recommendation [41.834188809480956]
我々は、新しいレコメンデーションフレームワークDual-Channel Multiplex Graph Neural Network (DCMGNN)を導入する。
明示的な振舞いパターン表現学習器を組み込んで、多重ユーザ-イテム相互作用関係からなる振舞いパターンをキャプチャする。
また、関係連鎖表現学習と関係連鎖認識エンコーダを含み、様々な補助関係が対象関係に与える影響を発見する。
論文 参考訳(メタデータ) (2024-03-18T09:56:00Z) - Sequential Recommendation with Auxiliary Item Relationships via
Multi-Relational Transformer [74.64431400185106]
逐次レコメンデーション(SR)のための補助項目関係をモデル化可能なマルチリレーショナルトランスを提案する。
具体的には,任意の項目関係と項目関係の重み付けを組み込んだ新たな自己注意モジュールを提案する。
第3に、シーケンス間アイテム関係ペアに対して、新しいシーケンス間アイテムモデリングモジュールを導入する。
論文 参考訳(メタデータ) (2022-10-24T19:49:17Z) - Improving Contrastive Learning with Model Augmentation [123.05700988581806]
このシーケンシャルレコメンデーションは,ユーザ行動における次の項目を予測することを目的としている。
シーケンスにおけるデータの分散性やノイズの問題から,新たな自己教師付き学習(SSL)パラダイムが提案され,性能が向上した。
論文 参考訳(メタデータ) (2022-03-25T06:12:58Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Generative Relation Linking for Question Answering over Knowledge Bases [12.778133758613773]
そこで本稿では, フレーミングを生成問題とする関係リンク手法を提案する。
このようなシーケンス・ツー・シーケンス・モデルを拡張して,対象とする知識ベースから構造化データを注入する。
我々は、議論-関係ペアのリストからなる構造化された出力を生成するためにモデルを訓練し、知識検証のステップを可能にする。
論文 参考訳(メタデータ) (2021-08-16T20:33:43Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。