Shape-conditioned 3D Molecule Generation via Equivariant Diffusion
Models
- URL: http://arxiv.org/abs/2308.11890v3
- Date: Mon, 16 Oct 2023 20:16:40 GMT
- Title: Shape-conditioned 3D Molecule Generation via Equivariant Diffusion
Models
- Authors: Ziqi Chen, Bo Peng, Srinivasan Parthasarathy, Xia Ning
- Abstract summary: Ligand-based drug design aims to identify novel drug candidates of similar shapes with known active molecules.
We developed a shape-guided generative model ShapeMol to generate 3D molecule structures conditioned on the shape of a given molecule.
- Score: 9.852142469374849
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ligand-based drug design aims to identify novel drug candidates of similar
shapes with known active molecules. In this paper, we formulated an in silico
shape-conditioned molecule generation problem to generate 3D molecule
structures conditioned on the shape of a given molecule. To address this
problem, we developed a translation- and rotation-equivariant shape-guided
generative model ShapeMol. ShapeMol consists of an equivariant shape encoder
that maps molecular surface shapes into latent embeddings, and an equivariant
diffusion model that generates 3D molecules based on these embeddings.
Experimental results show that ShapeMol can generate novel, diverse, drug-like
molecules that retain 3D molecular shapes similar to the given shape condition.
These results demonstrate the potential of ShapeMol in designing drug
candidates of desired 3D shapes binding to protein target pockets.
Related papers
- Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - Field-based Molecule Generation [50.124402120798365]
We show how the flexibility of this method provides crucial advantages over the prevalent, point-cloud based methods.
We tackle optical isomerism (enantiomers), a previously omitted molecular property that is crucial for drug safety and effectiveness.
arXiv Detail & Related papers (2024-02-24T17:13:58Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Equivariant Shape-Conditioned Generation of 3D Molecules for
Ligand-Based Drug Design [3.032184156362992]
We introduce a new 3D generative model that enables shape-conditioned 3D molecular design by encoding molecular shape and variationally encoding chemical identity.
We evaluate our 3D generative model in tasks relevant to drug design including shape-conditioned generation of chemically diverse molecular structures and shape-constrained molecular property optimization.
arXiv Detail & Related papers (2022-10-06T19:37:34Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
Generative models are an entirely different approach that learn to represent and optimize molecules in a continuous latent space.
We describe deep generative models of three dimensional molecular structures using atomic density grids.
We are also able to sample diverse sets of molecules based on a given input compound to increase the probability of creating valid, drug-like molecules.
arXiv Detail & Related papers (2020-10-17T01:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.