Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation
- URL: http://arxiv.org/abs/2412.15086v1
- Date: Thu, 19 Dec 2024 17:33:56 GMT
- Title: Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation
- Authors: Haoran Liu, Youzhi Luo, Tianxiao Li, James Caverlee, Martin Renqiang Min,
- Abstract summary: conditional generation of 3D drug-like molecules with textitexplicit control
We propose an E(3)-equivariant Wasserstein autoencoder and factorize the latent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules.
- Score: 29.905705361297578
- License:
- Abstract: We consider the conditional generation of 3D drug-like molecules with \textit{explicit control} over molecular properties such as drug-like properties (e.g., Quantitative Estimate of Druglikeness or Synthetic Accessibility score) and effectively binding to specific protein sites. To tackle this problem, we propose an E(3)-equivariant Wasserstein autoencoder and factorize the latent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules. Our model ensures explicit control over these molecular attributes while maintaining equivariance of coordinate representation and invariance of data likelihood. Furthermore, we introduce a novel alignment-based coordinate loss to adapt equivariant networks for auto-regressive de-novo 3D molecule generation from scratch. Extensive experiments validate our model's effectiveness on property-guided and context-guided molecule generation, both for de-novo 3D molecule design and structure-based drug discovery against protein targets.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
The inclusion of 3D structures during targeted drug design shows superior performance to other target-free models.
We develop a 3D equivariant diffusion model to solve the above challenges.
Our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.
arXiv Detail & Related papers (2023-03-06T23:01:43Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
We describe for the first time a deep learning system for generating 3D molecular structures conditioned on a receptor binding site.
We apply atom fitting and bond inference procedures to construct valid molecular conformations from generated atomic densities.
This work opens the door for end-to-end prediction of stable bioactive molecules from protein structures with deep learning.
arXiv Detail & Related papers (2021-10-28T15:17:24Z) - Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations [2.17167311150369]
We design an SE(3)-invariant model that processes torsion angles of a 3D molecular conformer.
We test our model on four benchmarks: contrastive learning to distinguish conformers of different stereoisomers in a learned latent space, classification of chiral centers as R/S, prediction of how enantiomers rotate circularly polarized light, and ranking enantiomers by their docking scores in an enantiosensitive protein pocket.
arXiv Detail & Related papers (2021-10-08T21:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.