論文の概要: Relational Concept Based Models
- arxiv url: http://arxiv.org/abs/2308.11991v1
- Date: Wed, 23 Aug 2023 08:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 15:05:51.298008
- Title: Relational Concept Based Models
- Title(参考訳): 関係概念に基づくモデル
- Authors: Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo
Diligenti, Giuseppe Marra
- Abstract要約: 概念ベースモデル(CBM)は問題を解くために設計されていないが、関係モデルはCBMとして解釈できない。
実験の結果,リレーショナルCBMは量子化概念に基づく説明の生成を支援することがわかった。
- 参考スコア(独自算出の注目度): 14.281078288592461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design of interpretable deep learning models working in relational
domains poses an open challenge: interpretable deep learning methods, such as
Concept-Based Models (CBMs), are not designed to solve relational problems,
while relational models are not as interpretable as CBMs. To address this
problem, we propose Relational Concept-Based Models, a family of relational
deep learning methods providing interpretable task predictions. Our
experiments, ranging from image classification to link prediction in knowledge
graphs, show that relational CBMs (i) match generalization performance of
existing relational black-boxes (as opposed to non-relational CBMs), (ii)
support the generation of quantified concept-based explanations, (iii)
effectively respond to test-time interventions, and (iv) withstand demanding
settings including out-of-distribution scenarios, limited training data
regimes, and scarce concept supervisions.
- Abstract(参考訳): 概念ベースモデル(CBM)のような解釈可能なディープラーニング手法は、関係的な問題を解決するために設計されていないが、リレーショナルモデルはCBMほど解釈できない。
この問題を解決するために,解釈可能なタスク予測を提供する関係的深層学習手法のファミリーであるリレーショナル概念ベースモデルを提案する。
画像分類からナレッジグラフのリンク予測まで多岐にわたる実験により,関係性cbmが示唆された。
(i)既存の関係性ブラックボックスの一般化性能(非関係性cbmとは対照的に)
二 量化概念に基づく説明の生成を支援すること。
(iii)試験時間介入に効果的に対応すること、及び
(四)配当外のシナリオ、限られた訓練データ体制、コンセプト監督の不足等、必要な設定に耐える。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を通じて、モデルの振る舞いを開示し、導くための原則的な方法を提供する。
本稿では,これらのバイアスに無害でありながら事前学習モデルを活用するために設計された新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その解釈可能性を維持しつつ,素粒子相関によるモデル依存の低減効果を示した。
論文 参考訳(メタデータ) (2024-07-12T03:07:28Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
本稿では,自己教師型解釈可能な概念埋め込みモデル(ICEM)を提案する。
我々は,大規模言語モデルの一般化能力を活用し,概念ラベルを自己管理的に予測する。
ICEMは、完全に教師されたコンセプトベースモデルやエンドツーエンドのブラックボックスモデルと同じようなパフォーマンスを達成するために、自己管理的な方法でトレーニングすることができる。
論文 参考訳(メタデータ) (2024-06-20T14:04:53Z) - AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model [7.674744385997066]
概念ボトルネックモデルは、人間の理解可能な概念の層を統合することにより、ニューラルネットワークの解釈可能性を高める。
AnyCBM"は、既存のトレーニングされたモデルを、計算リソースに最小限の影響を伴って、Concept Bottleneck Modelに変換する。
論文 参考訳(メタデータ) (2024-05-26T10:19:04Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
本稿では,DCMにおけるデータ駆動型アプローチの可能性を拡張するフレームワークを提案する。
これには、必要な関係を表す擬似データサンプルと、その実現度を測定する損失関数が含まれる。
ケーススタディは、このフレームワークの個別選択分析の可能性を示している。
論文 参考訳(メタデータ) (2023-05-30T12:53:55Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。