論文の概要: AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model
- arxiv url: http://arxiv.org/abs/2405.16508v1
- Date: Sun, 26 May 2024 10:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:49:07.164181
- Title: AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model
- Title(参考訳): ブラックボックスをコンセプト・ボトルネック・モデルに変える「AnyCBMs」
- Authors: Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Marc Langhenirich,
- Abstract要約: 概念ボトルネックモデルは、人間の理解可能な概念の層を統合することにより、ニューラルネットワークの解釈可能性を高める。
AnyCBM"は、既存のトレーニングされたモデルを、計算リソースに最小限の影響を伴って、Concept Bottleneck Modelに変換する。
- 参考スコア(独自算出の注目度): 7.674744385997066
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interpretable deep learning aims at developing neural architectures whose decision-making processes could be understood by their users. Among these techniqes, Concept Bottleneck Models enhance the interpretability of neural networks by integrating a layer of human-understandable concepts. These models, however, necessitate training a new model from the beginning, consuming significant resources and failing to utilize already trained large models. To address this issue, we introduce "AnyCBM", a method that transforms any existing trained model into a Concept Bottleneck Model with minimal impact on computational resources. We provide both theoretical and experimental insights showing the effectiveness of AnyCBMs in terms of classification performances and effectivenss of concept-based interventions on downstream tasks.
- Abstract(参考訳): 解釈可能なディープラーニングは、意思決定プロセスがユーザによって理解されるニューラルネットワークの開発を目標としている。
これらの技術の中で、Concept Bottleneck Modelsは、人間の理解可能な概念のレイヤを統合することによって、ニューラルネットワークの解釈可能性を高める。
しかし、これらのモデルは最初から新しいモデルを訓練し、かなりのリソースを消費し、既に訓練済みの大規模モデルを利用できなかった。
この問題に対処するために,既存のトレーニング済みモデルを,計算資源への影響を最小限に抑えた概念ボトルネックモデルに変換する手法である"AnyCBM"を導入する。
我々は,AnyCBMの有効性を示す理論的および実験的知見と,下流タスクにおける概念に基づく介入の有効性について述べる。
関連論文リスト
- Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
本稿では,CNNモデルの重みと構造的プーン構造を協調的に学習するための新しい構造的プルーニング手法を提案する。
本手法の中核となる要素は強化学習(RL)エージェントであり,その動作がCNNモデルの階層のプルーニング比を決定する。
我々は,モデルの重みとエージェントのポリシーを反復的に訓練し,共同訓練と刈り取りを行う。
論文 参考訳(メタデータ) (2024-03-28T15:22:29Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - Relational Concept Bottleneck Models [13.311396882130033]
概念ボトルネックモデル(CBM)は問題を解決するために設計されていない。
R-CBMは標準CBMとリレーショナルGNNの両方を表現できる。
特に,R-CBMが概念に基づく説明の生成を支援することを示す。
論文 参考訳(メタデータ) (2023-08-23T08:25:33Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
本稿では,ある概念を表す情報が与えられたニューラルネットワークモデルにどのように内在化されているかを分析する方法として,Emphconcept backpropagationという概念検出手法の拡張を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:21:13Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
概念ボトルネックモデル(CBM)に基づく新しい解釈可能なモデルを提案する。
CBMは概念ラベルを使用して、中間層を追加の可視層としてトレーニングする。
これら2つの概念をシームレスにトレーニングし,計算量を削減することにより,教師付き概念と教師なし概念を同時に得ることができる。
論文 参考訳(メタデータ) (2022-02-03T08:30:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
本稿では,視覚概念学習のための質問応答型カリキュラムを提案する。
視覚概念を学習するためのニューラルシンボリックな概念学習者と学習プロセスを導くための多次元項目応答理論(mIRT)モデルを設計する。
CLEVRの実験結果から,コンピテンスを意識したカリキュラムにより,提案手法は最先端のパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2020-07-03T05:08:09Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。