論文の概要: Cached Operator Reordering: A Unified View for Fast GNN Training
- arxiv url: http://arxiv.org/abs/2308.12093v1
- Date: Wed, 23 Aug 2023 12:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 14:18:16.500839
- Title: Cached Operator Reordering: A Unified View for Fast GNN Training
- Title(参考訳): Cached Operator Reordering:高速GNNトレーニングのための統一ビュー
- Authors: Julia Bazinska, Andrei Ivanov, Tal Ben-Nun, Nikoli Dryden, Maciej
Besta, Siyuan Shen and Torsten Hoefler
- Abstract要約: グラフニューラルネットワーク(GNN)は、構造化グラフデータを扱う強力なツールであり、ノード分類、グラフ分類、クラスタリングといったタスクに対処する。
しかし、GNN計算のスパース性は、従来のディープニューラルネットワークと比較してパフォーマンス最適化に新たな課題をもたらす。
GNN計算,I/O,メモリの統一的なビューを提供することで,これらの課題に対処する。
- 参考スコア(独自算出の注目度): 24.917363701638607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are a powerful tool for handling structured
graph data and addressing tasks such as node classification, graph
classification, and clustering. However, the sparse nature of GNN computation
poses new challenges for performance optimization compared to traditional deep
neural networks. We address these challenges by providing a unified view of GNN
computation, I/O, and memory. By analyzing the computational graphs of the
Graph Convolutional Network (GCN) and Graph Attention (GAT) layers -- two
widely used GNN layers -- we propose alternative computation strategies. We
present adaptive operator reordering with caching, which achieves a speedup of
up to 2.43x for GCN compared to the current state-of-the-art. Furthermore, an
exploration of different caching schemes for GAT yields a speedup of up to
1.94x. The proposed optimizations save memory, are easily implemented across
various hardware platforms, and have the potential to alleviate performance
bottlenecks in training large-scale GNN models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、構造化グラフデータを扱う強力なツールであり、ノード分類、グラフ分類、クラスタリングといったタスクに対処する。
しかし、GNN計算のスパース性は、従来のディープニューラルネットワークと比較してパフォーマンス最適化に新たな課題をもたらす。
GNN計算,I/O,メモリの統一的なビューを提供することで,これらの課題に対処する。
グラフ畳み込みネットワーク (GCN) とグラフ注意層 (GAT) の計算グラフを解析することにより, 代替計算手法を提案する。
本稿では,gcnの最大2.43倍の高速化を実現するキャッシングによるアダプティブ演算子リオーダリングを提案する。
さらに、GATの異なるキャッシュ方式の探索により、最大1.94倍のスピードアップが得られる。
提案した最適化はメモリを節約し、様々なハードウェアプラットフォームで容易に実装でき、大規模GNNモデルのトレーニングにおけるパフォーマンスボトルネックを軽減する可能性がある。
関連論文リスト
- Efficient Message Passing Architecture for GCN Training on HBM-based FPGAs with Orthogonal Topology On-Chip Networks [0.0]
グラフ畳み込みネットワーク(GCN)は、グラフ上の表現学習のための最先端のディープラーニングモデルである。
NUMAベースのメモリアクセス特性を利用したメッセージパッシングアーキテクチャを提案する。
また,提案アクセラレータ内でGCN特有のバックプロパゲーションアルゴリズムを再設計した。
論文 参考訳(メタデータ) (2024-11-06T12:00:51Z) - Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study [13.354505458409957]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習することができる。
グラフのばらつきは、最適以下のメモリアクセスパターンと長いトレーニング時間をもたらす。
グラフの並べ替えは、CPUおよびGPUベースのトレーニングのトレーニング時間を削減するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-17T12:28:02Z) - Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
メッセージパッシングGNNの新たな代替手段として,Topology Coordinate Neural Network (TCNN) と Directional Virtual Coordinate Neural Network (DVCNN) を提案する。
TCNNとDVCNNは、メッセージパッシングGNNの競合や優れたパフォーマンスを達成する。
私たちの研究は、グラフベースの機械学習のためのテクニックのツールボックスを拡張します。
論文 参考訳(メタデータ) (2023-12-03T10:14:10Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - GNNIE: GNN Inference Engine with Load-balancing and Graph-Specific
Caching [2.654276707313136]
GNNIEは、幅広いグラフニューラルネットワーク(GNN)を実行するために設計されたアクセラレータである。
i)ノード特徴オペランドをブロックに分割し、 (ii) 再注文と再配布を行い、 (iii) 処理要素間の通信オーバーヘッドの少ない柔軟なMACアーキテクチャを使用する。
GNNIEは、CPU上の8890倍、グラフアテンションネットワーク(GAT)、グラフ畳み込みネットワーク(GCN)、GraphSAGE、GINConv、DiffPool上の複数のデータセット上のGPU上の295倍の平均スピードアップを達成する。
論文 参考訳(メタデータ) (2021-05-21T20:07:14Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Bi-GCN: Binary Graph Convolutional Network [57.733849700089955]
ネットワークパラメータと入力ノードの特徴を二項化するバイナリグラフ畳み込みネットワーク(Bi-GCN)を提案する。
我々のBi-GCNは、ネットワークパラメータと入力データの両方で平均30倍のメモリ消費を削減でき、推論速度を平均47倍に加速できる。
論文 参考訳(メタデータ) (2020-10-15T07:26:23Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。