論文の概要: FIT-GNN: Faster Inference Time for GNNs Using Coarsening
- arxiv url: http://arxiv.org/abs/2410.15001v2
- Date: Fri, 24 Jan 2025 20:45:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:52:35.321414
- Title: FIT-GNN: Faster Inference Time for GNNs Using Coarsening
- Title(参考訳): FIT-GNN: 粗化を用いたGNNの高速推論時間
- Authors: Shubhajit Roy, Hrriday Ruparel, Kishan Ved, Anirban Dasgupta,
- Abstract要約: 粗大化に基づく手法は、グラフをより小さなグラフに減らし、より高速な計算をもたらす。
従来の研究は、推論フェーズにおける計算コストに十分な対処を行っていなかった。
本稿では,GNNの学習と推論の両段階における計算負担を軽減することにより,GNNのスケーラビリティを向上させる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.323700980948722
- License:
- Abstract: Scalability of Graph Neural Networks (GNNs) remains a significant challenge, particularly when dealing with large-scale graphs. To tackle this, coarsening-based methods are used to reduce the graph into a smaller graph, resulting in faster computation. Nonetheless, prior research has not adequately addressed the computational costs during the inference phase. This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during both training and inference phases. We demonstrate two different methods (Extra-Nodes and Cluster-Nodes). Our study also proposes a unique application of the coarsening algorithm for graph-level tasks, including graph classification and graph regression, which have not yet been explored. We conduct extensive experiments on multiple benchmark datasets in the order of $100K$ nodes to evaluate the performance of our approach. The results demonstrate that our method achieves competitive performance in tasks involving classification and regression on nodes and graphs, compared to traditional GNNs, while having single-node inference times that are orders of magnitude faster. Furthermore, our approach significantly reduces memory consumption, allowing training and inference on low-resource devices where traditional methods struggle.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)のスケーラビリティは、特に大規模グラフを扱う場合、依然として大きな課題である。
これを解決するために、粗い手法を用いてグラフをより小さなグラフに減らし、より高速な計算を行う。
それにもかかわらず、事前の研究は推論フェーズにおける計算コストに十分対応していない。
本稿では,GNNの学習と推論の両段階における計算負担を軽減することにより,GNNのスケーラビリティを向上させる新しい手法を提案する。
二つの異なる方法(Extra-NodesとCluster-Nodes)を示します。
また,まだ検討されていないグラフ分類やグラフ回帰など,グラフレベルのタスクに対する粗大化アルゴリズムのユニークな適用法を提案する。
提案手法の有効性を評価するため,複数のベンチマークデータセットに対して100K$ノードの順序で広範な実験を行った。
その結果,従来のGNNと比較すると,ノードやグラフの分類や回帰を含むタスクにおいて,単一ノードの推論時間が桁違い高速でありながら,競合性能が向上することが示唆された。
さらに,本手法はメモリ消費を大幅に削減し,従来の手法が苦戦する低リソースデバイス上でのトレーニングと推論を可能にした。
関連論文リスト
- Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータセットを扱う学習問題に対して、悪名高い代替手段として登場した。
本研究は,観測トポロジにおける摂動の存在を明示的に考慮した,GNNの堅牢な実装を提案する。
論文 参考訳(メタデータ) (2023-12-11T17:43:57Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。