論文の概要: SwitchCIT: Switching for Continual Instruction Tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2407.11780v1
- Date: Tue, 16 Jul 2024 14:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:32:53.089379
- Title: SwitchCIT: Switching for Continual Instruction Tuning of Large Language Models
- Title(参考訳): SwitchCIT:大規模言語モデルの連続的指導チューニングのためのスイッチ
- Authors: Xinbo Wu, Max Hartman, Vidhata Arjun Jayaraman, Lav R. Varshney,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域、特に一般的な言語理解において印象的な能力を発揮している。
しかし、これらのモデルは大量のテキストデータに基づいて訓練されており、命令によって引き起こされる特定のタスクに対して微妙に最適化されていないかもしれない。
本研究は, LLMの連続的な命令学習において, パラメータ効率の高いチューニングモデルに演算をルーティングする切替機構を通じて, 破滅的な忘れに対処するものである。
- 参考スコア(独自算出の注目度): 14.085371250265224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited impressive capabilities in various domains, particularly in general language understanding. However these models, trained on massive text data, may not be finely optimized for specific tasks triggered by instructions. Continual instruction tuning is crucial to adapt LLMs to evolving tasks and domains, ensuring their effectiveness and relevance across a wide range of applications. In the context of continual instruction tuning, where models are sequentially trained on different tasks, catastrophic forgetting can occur, leading to performance degradation on previously learned tasks. This work addresses the catastrophic forgetting in continual instruction learning for LLMs through a switching mechanism for routing computations to parameter-efficient tuned models. We demonstrate the effectiveness of our method through experiments on continual instruction tuning of different natural language generation tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域、特に一般的な言語理解において印象的な能力を発揮している。
しかし、これらのモデルは大量のテキストデータに基づいて訓練されており、命令によって引き起こされる特定のタスクに対して微妙に最適化されていないかもしれない。
連続的な命令チューニングは、LLMをタスクやドメインの進化に適応させ、広範囲のアプリケーションにおいてその有効性と妥当性を保証するために不可欠である。
連続的な命令チューニングの文脈では、モデルが異なるタスクで逐次訓練されるため、破滅的な忘れが生まれ、以前に学習したタスクのパフォーマンスが低下する。
本研究は, LLMの連続的な命令学習において, パラメータ効率の高いチューニングモデルに演算をルーティングする切替機構を通じて, 破滅的な忘れに対処するものである。
本研究では,自然言語生成タスクの連続的な命令チューニング実験を通じて,提案手法の有効性を実証する。
関連論文リスト
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
簡単な指示追従タスクを導入し、合成データセットを用いてトランスフォーマーに基づく因果言語モデルを分析する。
本研究は,本モデルが隠れ空間内のデータをクラスタリングすることで,タスク固有の情報を学習し,学習中にこのクラスタリングプロセスが動的に進化することを示唆している。
論文 参考訳(メタデータ) (2024-02-19T14:02:31Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning [66.31509106146605]
命令を調整した大規模言語モデル(LLM)は、様々なタスクや言語で顕著な能力を示している。
しかし、利用可能なデータが不足しているため、表現不足の言語に一般化する能力は限られている。
InstructAlignは、LLMが新しい未知の言語を学習済みの高リソース言語と整列できるようにするために、連続的なクロスリンガル命令チューニングを使用する。
論文 参考訳(メタデータ) (2023-05-23T02:51:34Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
CP-Tuning(CP-Tuning)は、言語モデルのための最初のエンドツーエンドのPrompt Tuningフレームワークである。
完全にトレーニング可能なプロンプトパラメータを持つタスク不変の連続プロンプトエンコーディング技術と統合されている。
IRシステムや異なるPLMで使用される様々な言語理解タスクの実験は、CP-Tuningが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-04-01T02:24:24Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z) - CALM: Continuous Adaptive Learning for Language Modeling [18.72860206714457]
自然言語処理コミュニティでは,大規模言語表現モデルのトレーニングが標準となっている。
これらの事前学習モデルが破滅的忘れという形で性能劣化を示すことを示す。
言語モデリングのための継続的適応学習CALM:複数のドメインにまたがる知識を保持するモデルをレンダリングする手法を提案する。
論文 参考訳(メタデータ) (2020-04-08T03:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。