Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey
- URL: http://arxiv.org/abs/2308.12113v5
- Date: Tue, 23 Apr 2024 05:46:01 GMT
- Title: Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey
- Authors: Qinfeng Zhu, Lei Fan, Ningxin Weng,
- Abstract summary: Deep learning (DL) has become one of the mainstream and effective methods for point cloud analysis tasks.
Point cloud data augmentation methods have been widely used in different point cloud processing tasks.
This article surveys these methods, categorizing them into a taxonomy framework that comprises basic and specialized point cloud data augmentation methods.
- Score: 1.5954224931801726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) has become one of the mainstream and effective methods for point cloud analysis tasks such as detection, segmentation and classification. To reduce overfitting during training DL models and improve model performance especially when the amount and/or diversity of training data are limited, augmentation is often crucial. Although various point cloud data augmentation methods have been widely used in different point cloud processing tasks, there are currently no published systematic surveys or reviews of these methods. Therefore, this article surveys these methods, categorizing them into a taxonomy framework that comprises basic and specialized point cloud data augmentation methods. Through a comprehensive evaluation of these augmentation methods, this article identifies their potentials and limitations, serving as a useful reference for choosing appropriate augmentation methods. In addition, potential directions for future research are recommended. This survey contributes to providing a holistic overview of the current state of point cloud data augmentation, promoting its wider application and development.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
Data augmentation is a technique that generates high-quality artificial data by manipulating existing data samples.
Existing literature surveys only focus on a certain type of specific modality data.
We propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities.
arXiv Detail & Related papers (2024-05-15T11:58:08Z) - A Survey on Data Selection for Language Models [148.300726396877]
Data selection methods aim to determine which data points to include in a training dataset.
Deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive.
Few organizations have the resources for extensive data selection research.
arXiv Detail & Related papers (2024-02-26T18:54:35Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
This paper introduces point cloud acquisition, characteristics, and challenges.
We review 3D data representations, storage formats, and commonly used datasets for point cloud classification.
arXiv Detail & Related papers (2023-11-05T09:28:43Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Sequential Point Clouds: A Survey [33.20866441256135]
This paper presents an extensive review of the deep learning-based methods for sequential point cloud research.
It includes dynamic flow estimation, object detection & tracking, point cloud segmentation, and point cloud forecasting.
arXiv Detail & Related papers (2022-04-20T09:14:20Z) - Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion
Processing and Analysis [14.203228394483117]
This work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches.
This review sums up the commonly used datasets and illustrates the applications of point cloud completion.
arXiv Detail & Related papers (2022-03-07T11:47:14Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Time Series Data Augmentation for Deep Learning: A Survey [35.2161833151567]
We systematically review different data augmentation methods for time series data.
We empirically compare different data augmentation methods for different tasks including time series classification, anomaly detection, and forecasting.
arXiv Detail & Related papers (2020-02-27T23:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.