Data-driven decision-focused surrogate modeling
- URL: http://arxiv.org/abs/2308.12161v2
- Date: Mon, 25 Dec 2023 06:31:03 GMT
- Title: Data-driven decision-focused surrogate modeling
- Authors: Rishabh Gupta, Qi Zhang
- Abstract summary: We introduce the concept of decision-focused surrogate modeling for solving challenging nonlinear optimization problems in real-time settings.
The proposed data-driven framework seeks to learn a simpler, e.g. convex, surrogate optimization model that is trained to minimize the decision prediction error.
We validate our framework through numerical experiments involving the optimization of common nonlinear chemical processes.
- Score: 10.1947610432159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the concept of decision-focused surrogate modeling for solving
computationally challenging nonlinear optimization problems in real-time
settings. The proposed data-driven framework seeks to learn a simpler, e.g.
convex, surrogate optimization model that is trained to minimize the decision
prediction error, which is defined as the difference between the optimal
solutions of the original and the surrogate optimization models. The learning
problem, formulated as a bilevel program, can be viewed as a data-driven
inverse optimization problem to which we apply a decomposition-based solution
algorithm from previous work. We validate our framework through numerical
experiments involving the optimization of common nonlinear chemical processes
such as chemical reactors, heat exchanger networks, and material blending
systems. We also present a detailed comparison of decision-focused surrogate
modeling with standard data-driven surrogate modeling methods and demonstrate
that our approach is significantly more data-efficient while producing simple
surrogate models with high decision prediction accuracy.
Related papers
- Comparative study of regression vs pairwise models for surrogate-based heuristic optimisation [1.2535250082638645]
This paper addresses the formulation of surrogate problems as both regression models that approximate fitness (surface surrogate models) and a novel way to connect classification models (pairwise surrogate models)
The performance of the overall search, when using online machine learning-based surrogate models, depends not only on the accuracy of the predictive model but also on the kind of bias towards positive or negative cases.
arXiv Detail & Related papers (2024-10-04T13:19:06Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Surrogate Models for Optimization of Dynamical Systems [0.0]
This paper provides a smart data driven mechanism to construct low dimensional surrogate models.
These surrogate models reduce the computational time for solution of the complex optimization problems.
arXiv Detail & Related papers (2021-01-22T14:09:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.