An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation
- URL: http://arxiv.org/abs/2308.12358v4
- Date: Mon, 9 Sep 2024 10:09:35 GMT
- Title: An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation
- Authors: Jan Naumann, Erik Lennart Weerda, Matteo Rizzi, Jens Eisert, Philipp Schmoll,
- Abstract summary: tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently.
In recent years, multiple proposals for the variational optimization of the quantum state have been put forward.
We review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction to automatic differentiation.
- Score: 0.2796197251957244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently. Their manipulation and contraction has remained a challenge over the years, however. For most of the history, ground state simulations of two-dimensional quantum lattice systems using (infinite) projected entangled pair states have relied on what is called a time-evolving block decimation. In recent years, multiple proposals for the variational optimization of the quantum state have been put forward, overcoming accuracy and convergence problems of previously known methods. The incorporation of automatic differentiation in tensor networks algorithms has ultimately enabled a new, flexible way for variational simulation of ground states and excited states. In this work we review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction to automatic differentiation, a description of a general foundation into which various two-dimensional lattices can be conveniently incorporated, and demonstrative benchmarking results.
Related papers
- Machine-learning certification of multipartite entanglement for noisy quantum hardware [1.204553980682492]
Entanglement is a fundamental aspect of quantum physics, both conceptually and for its many applications.
We develop a certification pipeline that feeds statistics of random local measurements into a non-linear dimensionality reduction algorithm.
We verify the accuracy of its predictions on simulated test data, and apply it to states prepared on IBM quantum computing hardware.
arXiv Detail & Related papers (2024-08-22T12:47:58Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Neural-network quantum states for many-body physics [0.0]
Variational quantum calculations have borrowed many tools and algorithms from the machine learning community.
Trial states inspired by deep learning problems can accurately model many-body correlated phenomena in spin, fermionic and qubit systems.
An overview of recent results of first-principles ground-state and real-time calculations is provided.
arXiv Detail & Related papers (2024-02-16T19:00:01Z) - Certifying ground-state properties of quantum many-body systems [4.377012041420585]
We show how to derive certifiable bounds on the value of any observable in the ground state.
We exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles.
arXiv Detail & Related papers (2023-10-09T16:40:19Z) - Coherent-State Ladder Time-Dependent Variational Principle for Open
Quantum Systems [0.0]
We present a new paradigm for the dynamical simulation of interacting bosonic systems.
The method relies on a variational ansatz for the $n$-boson density matrix, in terms of a superposition of photon-added coherent states.
We test our method on several examples, demonstrating its potential application to the predictive simulation of interacting bosonic systems and cat qubits.
arXiv Detail & Related papers (2023-06-23T18:00:00Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Accelerated variational algorithms for digital quantum simulation of
many-body ground states [0.0]
One of the key applications for the quantum simulators is to emulate the ground state of many-body systems.
variational methods have also been proposed and realized in quantum simulators for emulating the ground state of many-body systems.
arXiv Detail & Related papers (2020-06-16T18:01:35Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.