Certifying ground-state properties of quantum many-body systems
- URL: http://arxiv.org/abs/2310.05844v5
- Date: Thu, 18 Jul 2024 15:57:38 GMT
- Title: Certifying ground-state properties of quantum many-body systems
- Authors: Jie Wang, Jacopo Surace, Irénée Frérot, Benoît Legat, Marc-Olivier Renou, Victor Magron, Antonio Acín,
- Abstract summary: We show how to derive certifiable bounds on the value of any observable in the ground state.
We exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles.
- Score: 4.377012041420585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A ubiquitous problem in quantum physics is to understand the ground-state properties of many-body systems. Confronted with the fact that exact diagonalisation quickly becomes impossible when increasing the system size, variational approaches are typically employed as a scalable alternative: energy is minimised over a subset of all possible states and then different physical quantities are computed over the solution state. Despite remarkable success, rigorously speaking, all what variational methods offer are upper bounds on the ground-state energy. On the other hand, so-called relaxations of the ground-state problem based on semidefinite programming represent a complementary approach, providing lower bounds to the ground-state energy. However, in their current implementation, neither variational nor relaxation methods offer provable bound on other observables in the ground state beyond the energy. In this work, we show that the combination of the two classes of approaches can be used to derive certifiable bounds on the value of any observable in the ground state, such as correlation functions of arbitrary order, structure factors, or order parameters. We illustrate the power of this approach in paradigmatic examples of 1D and 2D spin-one-half Heisenberg models. To improve the scalability of the method, we exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles at much higher precision than previous works. Our analysis therefore shows how to obtain certifiable bounds on many-body ground-state properties beyond energy in a scalable way.
Related papers
- Certifying steady-state properties of open quantum systems [0.0]
Estimating steady state properties of open quantum systems is a crucial problem in quantum technology.
We show how to derive in a scalable way using semi-definite programming certified bounds on the expectation value of an arbitrary observable.
arXiv Detail & Related papers (2024-10-17T15:13:12Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Prepotential Approach: a unified approach to exactly, quasi-exactly, and rationally extended solvable quantal systems [0.0]
We give a brief overview of a simple and unified way, called the prepotential approach.
It treats both exact and quasi-exact solvabilities of the one-dimensional Schr"odinger equation.
We illustrate the approach by several paradigmatic examples of Hermitian and non-Hermitian Hamiltonians with real energies.
arXiv Detail & Related papers (2023-10-22T11:40:00Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Accurate Computation of Quantum Excited States with Neural Networks [4.99320937849508]
We present a variational Monte Carlo algorithm for estimating the lowest excited states of a quantum system.
Our method is the first deep learning approach to achieve accurate vertical excitation energies on benzene-scale molecules.
We expect this technique will be of great interest for applications to atomic, nuclear and condensed matter physics.
arXiv Detail & Related papers (2023-08-31T16:27:08Z) - An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation [0.2796197251957244]
tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently.
In recent years, multiple proposals for the variational optimization of the quantum state have been put forward.
We review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction to automatic differentiation.
arXiv Detail & Related papers (2023-08-23T18:03:14Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Learning quantum many-body systems from a few copies [1.5229257192293197]
Estimating physical properties of quantum states from measurements is one of the most fundamental tasks in quantum science.
We identify conditions on states under which it is possible to infer the expectation values of all quasi-local observables of a state.
We show that this constitutes a provable exponential improvement in the number of copies over state-of-the-art tomography protocols.
arXiv Detail & Related papers (2021-07-07T16:21:51Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.