A Theory of Intelligences
- URL: http://arxiv.org/abs/2308.12411v2
- Date: Fri, 5 Apr 2024 21:36:17 GMT
- Title: A Theory of Intelligences
- Authors: Michael E. Hochberg,
- Abstract summary: I develop a framework that applies across all systems from physics, to biology, humans and AI.
I present general equations for intelligence and its components, and a simple expression for the evolution of intelligence traits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligence is a human construct to represent the ability to achieve goals. Given this wide berth, intelligence has been defined countless times, studied in a variety of ways and represented using numerous measures. Understanding intelligence ultimately requires theory and quantification, both of which have proved elusive. I develop a framework -- the Theory of Intelligences (TIS) -- that applies across all systems from physics, to biology, humans and AI. TIS likens intelligence to a calculus, differentiating, correlating and integrating information. Intelligence operates at many levels and scales and TIS distils these into a parsimonious macroscopic framework centered on solving, planning and their optimization to accomplish goals. Notably, intelligence can be expressed in informational units or in units relative to goal difficulty, the latter defined as complexity relative to system (individual or benchmarked) ability. I present general equations for intelligence and its components, and a simple expression for the evolution of intelligence traits. The measures developed here could serve to gauge different facets of intelligence for any step-wise transformation of information. I argue that proxies such as environment, technology, society and collectives are essential to a general theory of intelligence and to possible evolutionary transitions in intelligence, particularly in humans. I conclude with testable predictions of TIS and offer several speculations.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - On a Functional Definition of Intelligence [0.0]
Without an agreed-upon definition of intelligence, asking "is this system intelligent?"" is an untestable question.
Most work on precisely capturing what we mean by "intelligence" has come from the fields of philosophy, psychology, and cognitive science.
We present an argument for a purely functional, black-box definition of intelligence, distinct from how that intelligence is actually achieved.
arXiv Detail & Related papers (2023-12-15T05:46:49Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Cognitive Architecture for Co-Evolutionary Hybrid Intelligence [0.17767466724342065]
The paper questions the feasibility of a strong (general) data-centric artificial intelligence (AI)
As an alternative, the concept of co-evolutionary hybrid intelligence is proposed.
An architecture seamlessly incorporates a human into the loop of intelligent problem solving is considered.
arXiv Detail & Related papers (2022-09-05T08:26:16Z) - A World-Self Model Towards Understanding Intelligence [0.0]
We will compare human and artificial intelligence, and propose that a certain aspect of human intelligence is the key to connect perception and cognition.
We will present the broader idea of "concept", the principles and mathematical frameworks of the new model World-Self Model (WSM) of intelligence, and finally an unified general framework of intelligence based on WSM.
arXiv Detail & Related papers (2022-03-25T16:42:23Z) - Intelligence as information processing: brains, swarms, and computers [0.0]
There is no agreed definition of intelligence, so it is problematic to simply ask whether brains, swarms, computers, or other systems are intelligent or not.
To compare the potential intelligence exhibited by different cognitive systems, I use the common approach used by artificial intelligence and artificial life.
arXiv Detail & Related papers (2021-08-09T19:03:15Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.