論文の概要: ARF-Plus: Controlling Perceptual Factors in Artistic Radiance Fields for 3D Scene Stylization
- arxiv url: http://arxiv.org/abs/2308.12452v3
- Date: Thu, 24 Apr 2025 15:59:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.526786
- Title: ARF-Plus: Controlling Perceptual Factors in Artistic Radiance Fields for 3D Scene Stylization
- Title(参考訳): ARF-Plus:3次元スチル化のための芸術的放射場における知覚的要因の制御
- Authors: Wenzhao Li, Tianhao Wu, Fangcheng Zhong, Cengiz Oztireli,
- Abstract要約: レイディアンス・フィールド・スタイル・トランスファー(Radiance Field style transfer)は、3Dシーン・スタイル化の手段として最近人気を博した新興分野である。
我々は、放射場スタイルの伝達における研究のギャップ、十分な知覚制御能力の欠如について強調する。
ARF-Plusは、知覚因子の管理可能な制御を提供する3Dニューラルスタイルのトランスファーフレームワークである。
- 参考スコア(独自算出の注目度): 10.839978477871426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The radiance fields style transfer is an emerging field that has recently gained popularity as a means of 3D scene stylization, thanks to the outstanding performance of neural radiance fields in 3D reconstruction and view synthesis. We highlight a research gap in radiance fields style transfer, the lack of sufficient perceptual controllability, motivated by the existing concept in the 2D image style transfer. In this paper, we present ARF-Plus, a 3D neural style transfer framework offering manageable control over perceptual factors, to systematically explore the perceptual controllability in 3D scene stylization. Four distinct types of controls - color preservation control, (style pattern) scale control, spatial (selective stylization area) control, and depth enhancement control - are proposed and integrated into this framework. Results from real-world datasets, both quantitative and qualitative, show that the four types of controls in our ARF-Plus framework successfully accomplish their corresponding perceptual controls when stylizing 3D scenes. These techniques work well for individual style inputs as well as for the simultaneous application of multiple styles within a scene. This unlocks a realm of limitless possibilities, allowing customized modifications of stylization effects and flexible merging of the strengths of different styles, ultimately enabling the creation of novel and eye-catching stylistic effects on 3D scenes.
- Abstract(参考訳): レイディアンス・フィールド・スタイル・トランスファーは,3次元再構成とビュー・シンセサイザーにおけるニューラル・レイディアンス・フィールドの優れた性能のおかげで,近年3次元シーン・スタイリングの手段として人気が高まっている。
本稿では,2次元画像スタイル転送における既存の概念に動機づけられた,放射場スタイル転送における研究ギャップ,十分な知覚制御能力の欠如について述べる。
本稿では,3次元シーンスタイリングにおける知覚制御性を体系的に探求するために,知覚因子の管理可能な制御を提供する3次元ニューラルスタイルトランスファーフレームワークであるARF-Plusを提案する。
色保存制御,(スタイルパターン)スケール制御,空間的(選択的スタイリゼーション領域)制御,奥行き強化制御の4種類の異なる制御方法が提案され,この枠組みに統合されている。
ARF-Plusフレームワークの4種類の制御は、3Dシーンをスタイリングする際に、対応する知覚制御を達成できた。
これらのテクニックは、個々のスタイルの入力だけでなく、シーン内の複数のスタイルの同時適用にも有効である。
これは無限の可能性の領域を開放し、スタイリゼーション効果のカスタマイズと異なるスタイルの強度の柔軟なマージを可能にし、最終的に3Dシーンに斬新で目を引くスタイリスティックなエフェクトを創出することを可能にする。
関連論文リスト
- Visibility-Uncertainty-guided 3D Gaussian Inpainting via Scene Conceptional Learning [63.94919846010485]
3DGI)は、複数の入力ビューから補完的な視覚的・意味的手がかりを効果的に活用することが困難である。
本稿では,異なる入力ビュー間での3Dポイントの視認性不確実性を計測し,それらを用いて3DGIを誘導する手法を提案する。
ViSibility-uncerTainty-guided 3DGIとシーンコンセプトAl学習を統合し,新しい3DGIフレームワークであるVISTAを構築した。
論文 参考訳(メタデータ) (2025-04-23T06:21:11Z) - G3DST: Generalizing 3D Style Transfer with Neural Radiance Fields across Scenes and Styles [45.92812062685523]
既存の3Dスタイル転送の方法は、シングルまたは複数スタイルのシーンごとの広範な最適化が必要である。
本研究では, シーンごとの最適化やスタイルごとの最適化を必要とせずに, NeRF からスタイリングされた新しいビューをレンダリングすることで, 既存の手法の限界を克服する。
以上の結果から,本手法はシーンごとの手法に匹敵する視覚的品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-24T08:04:19Z) - CoARF: Controllable 3D Artistic Style Transfer for Radiance Fields [7.651502365257349]
本稿では,制御可能な3Dシーンスタイリングのための新しいアルゴリズムであるCoARFを紹介する。
CoARFは、ユーザが指定したスタイル転送の制御性と、より正確な特徴マッチングを備えた優れたスタイル転送品質を提供する。
論文 参考訳(メタデータ) (2024-04-23T12:22:32Z) - StylizedGS: Controllable Stylization for 3D Gaussian Splatting [53.0225128090909]
StylizedGSは知覚因子を適応的に制御する効率的な3Dニューラルスタイル転送フレームワークである。
本手法は,忠実なブラシストロークとフレキシブル制御による幾何整合性を特徴とする高品質なスタイリゼーションを実現する。
論文 参考訳(メタデータ) (2024-04-08T06:32:11Z) - Style-Consistent 3D Indoor Scene Synthesis with Decoupled Objects [84.45345829270626]
制御可能な3D屋内シーン合成は、技術進歩の最前線にある。
シーンスタイリングの現在の手法は、シーン全体にスタイルを適用することに限定されている。
室内3Dシーンを合成するためのユニークなパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-24T03:10:36Z) - DeformToon3D: Deformable 3D Toonification from Neural Radiance Fields [96.0858117473902]
3Dトーン化には、テクスチャ化された幾何学とテクスチャで、アートドメインのスタイルをターゲットの3D顔に転送することが含まれる。
階層型3D GANに適した効果的なトーン化フレームワークであるDeformToon3Dを提案する。
提案手法は3次元トーン化を幾何学とテクスチャスタイリングのサブプロブレムに分解し,元の潜伏空間をよりよく保存する。
論文 参考訳(メタデータ) (2023-09-08T16:17:45Z) - S2RF: Semantically Stylized Radiance Fields [1.243080988483032]
本稿では,任意の画像からオブジェクトへスタイルを3Dシーンで転送する手法を提案する。
我々の主な目的は、3Dシーンのスタイリングをより制御し、任意の視点からカスタマイズ可能でスタイリングされたシーン画像の作成を容易にすることである。
論文 参考訳(メタデータ) (2023-09-03T19:32:49Z) - OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis [81.70922087960271]
我々は,非構造画像から学習した新しい幾何学誘導型3次元頭部合成モデルであるOmniAvatarを提案する。
我々のモデルは、最先端の手法と比較して、魅力的なダイナミックディテールで、より好ましいID保存された3Dヘッドを合成することができる。
論文 参考訳(メタデータ) (2023-03-27T18:36:53Z) - StyleRF: Zero-shot 3D Style Transfer of Neural Radiance Fields [52.19291190355375]
StyleRF(Style Radiance Fields)は、革新的な3Dスタイル転送技術である。
3Dシーンを表現するために、高精細な特徴の明確なグリッドを使用し、ボリュームレンダリングによって高精細な幾何学を確実に復元することができる。
グリッド機能は参照スタイルに従って変換され、それが直接的に高品質のゼロショットスタイルの転送につながる。
論文 参考訳(メタデータ) (2023-03-19T08:26:06Z) - StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image
Synthesis [92.25145204543904]
StyleNeRFは高解像度画像合成のための3次元認識型生成モデルである。
ニューラル放射場(NeRF)をスタイルベースジェネレータに統合する。
高品質な3D一貫性を維持しながら、対話的な速度で高解像度画像を合成することができる。
論文 参考訳(メタデータ) (2021-10-18T02:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。