論文の概要: Optimizing Neural Network Scale for ECG Classification
- arxiv url: http://arxiv.org/abs/2308.12492v1
- Date: Thu, 24 Aug 2023 01:26:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 15:43:46.080191
- Title: Optimizing Neural Network Scale for ECG Classification
- Title(参考訳): ECG分類のためのニューラルネットワークスケール最適化
- Authors: Byeong Tak Lee, Yong-Yeon Jo, Joon-Myoung Kwon
- Abstract要約: 心電図(ECG)解析のための残留ニューラルネットワーク(ResNet)を対象とするスケーリング畳み込みニューラルネットワーク(CNN)について検討する。
本研究では,層深さ,チャネル数,コンボリューションカーネルサイズといった重要なパラメータの影響を調べることで,ResNetのスケールアップに有効な手法を探索し,実証した。
我々の発見は、計算資源が少ないか、少ない時間でより効率的で正確なモデルを得るための洞察を与えてくれる。
- 参考スコア(独自算出の注目度): 1.8953148404648703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study scaling convolutional neural networks (CNNs), specifically targeting
Residual neural networks (ResNet), for analyzing electrocardiograms (ECGs).
Although ECG signals are time-series data, CNN-based models have been shown to
outperform other neural networks with different architectures in ECG analysis.
However, most previous studies in ECG analysis have overlooked the importance
of network scaling optimization, which significantly improves performance. We
explored and demonstrated an efficient approach to scale ResNet by examining
the effects of crucial parameters, including layer depth, the number of
channels, and the convolution kernel size. Through extensive experiments, we
found that a shallower network, a larger number of channels, and smaller kernel
sizes result in better performance for ECG classifications. The optimal network
scale might differ depending on the target task, but our findings provide
insight into obtaining more efficient and accurate models with fewer computing
resources or less time. In practice, we demonstrate that a narrower search
space based on our findings leads to higher performance.
- Abstract(参考訳): 本研究では、心電図(ECG)解析のためのResidual Neural Network(ResNet)を対象とするCNNのスケーリングについて検討する。
ECG信号は時系列データであるが、CNNベースのモデルはECG分析において異なるアーキテクチャを持つ他のニューラルネットワークよりも優れていることが示されている。
しかし、ECG分析におけるこれまでのほとんどの研究は、ネットワークスケーリング最適化の重要性を見落としており、性能が大幅に向上している。
本研究では,層深さ,チャネル数,コンボリューションカーネルサイズといった重要なパラメータの影響を調べることで,ResNetのスケールアップに有効な手法を探索し,実証した。
実験により、より浅いネットワーク、より多くのチャネル、より小さいカーネルサイズによりECG分類の性能が向上することが判明した。
最適なネットワークスケールは、目標とするタスクによって異なるかもしれないが、我々の発見は、より効率的で正確なモデルを得るための洞察を提供する。
実際に、我々の発見に基づくより狭い検索空間がより高い性能をもたらすことを示す。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks [4.336065967298193]
ほとんどのニューラルネットワーク(SNN)は、低レイテンシと電力効率を必要とするいくつかの重要なタスクに必ずしも適合しない誘導バイアスに基づいてトレーニングされている。
本稿では、分散脳波センサに存在する動的関係情報を学習する多チャンネル脳波分類(EEGS)のためのグラフスパイクニューラルアーキテクチャを提案する。
提案手法は,従来のSNNと比較して,推定計算の複雑さを20ドル程度削減し,モータ実行タスクにおいて同等の精度を達成した。
論文 参考訳(メタデータ) (2023-04-15T23:30:17Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
本稿では、動的ソースルーティング(DSR)とエネルギーリンク品質(REL)に基づくIoTヘルスケアプラットフォームのためのルーティングシステムを提案する。
Deep-ECGは、重要な特徴を抽出するためにディープCNNを使用し、単純かつ高速な距離関数を用いて比較する。
その結果,提案手法は分類精度において他よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-08T13:37:23Z) - Classification of Motor Imagery EEG Signals by Using a Divergence Based
Convolutional Neural Network [0.0]
増強過程はEEG信号の分類性能を高めるために適用されないことが観察される。
本研究では、MI EEG信号の分類性能に及ぼす増強過程の影響について検討した。
論文 参考訳(メタデータ) (2021-03-19T18:27:28Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
遺伝的U-Netは、より優れた網膜血管セグメンテーションを実現することができるが、アーキテクチャに基づくパラメータが少ないU字型畳み込みニューラルネットワーク(CNN)を生成するために提案されている。
実験の結果,提案手法を用いて得られたアーキテクチャは,元のU-Netパラメータの1%以下で優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-29T13:31:36Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - KiU-Net: Towards Accurate Segmentation of Biomedical Images using
Over-complete Representations [59.65174244047216]
本稿では,高次元にデータを投影するオーバーコンプリートアーキテクチャ(Ki-Net)を提案する。
このネットワークは、U-Netで拡張されると、小さな解剖学的ランドマークを分割する場合に大幅に改善される。
早期新生児の2次元超音波による脳解剖学的セグメント化の課題について検討した。
論文 参考訳(メタデータ) (2020-06-08T18:59:24Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
残留ネットワーク(ResNet)と密結合ネットワーク(DenseNet)は、ディープ畳み込みニューラルネットワーク(DCNN)のトレーニング効率と性能を大幅に改善した。
両ネットワークの利点を考慮した効率的なネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-28T12:16:24Z) - What Deep CNNs Benefit from Global Covariance Pooling: An Optimization
Perspective [102.37204254403038]
我々は最適化の観点から、GCPの深いCNNのメリットを理解する試みを行っている。
GCPは最適化のランドスケープをよりスムーズにし、勾配をより予測できることを示す。
多様なタスクに対して様々な深部CNNモデルを用いて広範な実験を行い,その結果を強く支持する。
論文 参考訳(メタデータ) (2020-03-25T07:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。