論文の概要: EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks
- arxiv url: http://arxiv.org/abs/2304.07655v2
- Date: Tue, 18 Apr 2023 20:49:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 10:45:12.276334
- Title: EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks
- Title(参考訳): EEGSN:グラフスパイクニューラルネットワークによる脳波の高効率低遅延デコーディングを目指して
- Authors: Xi Chen, Siwei Mai, Konstantinos Michmizos
- Abstract要約: ほとんどのニューラルネットワーク(SNN)は、低レイテンシと電力効率を必要とするいくつかの重要なタスクに必ずしも適合しない誘導バイアスに基づいてトレーニングされている。
本稿では、分散脳波センサに存在する動的関係情報を学習する多チャンネル脳波分類(EEGS)のためのグラフスパイクニューラルアーキテクチャを提案する。
提案手法は,従来のSNNと比較して,推定計算の複雑さを20ドル程度削減し,モータ実行タスクにおいて同等の精度を達成した。
- 参考スコア(独自算出の注目度): 4.336065967298193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A vast majority of spiking neural networks (SNNs) are trained based on
inductive biases that are not necessarily a good fit for several critical tasks
that require low-latency and power efficiency. Inferring brain behavior based
on the associated electroenchephalography (EEG) signals is an example of how
networks training and inference efficiency can be heavily impacted by learning
spatio-temporal dependencies. Up to now, SNNs rely solely on general inductive
biases to model the dynamic relations between different data streams. Here, we
propose a graph spiking neural network architecture for multi-channel EEG
classification (EEGSN) that learns the dynamic relational information present
in the distributed EEG sensors. Our method reduced the inference computational
complexity by $\times 20$ compared to the state-of-the-art SNNs, while achieved
comparable accuracy on motor execution classification tasks. Overall, our work
provides a framework for interpretable and efficient training of graph spiking
networks that are suitable for low-latency and low-power real-time
applications.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)の大多数は、低レイテンシと電力効率を必要とするいくつかの重要なタスクに必ずしも適合しない誘導バイアスに基づいて訓練されている。
関連する脳電図(EEG)信号に基づく脳行動の推測は、時空間依存の学習によってネットワークのトレーニングと推論効率に大きな影響を与える一例である。
これまでSNNは、異なるデータストリーム間の動的関係をモデル化するために、一般的な帰納バイアスのみに依存していた。
本稿では,分散脳波センサに存在する動的関係情報を学習する多チャンネル脳波分類(eegsn)のためのグラフスパイキングニューラルネットワークアーキテクチャを提案する。
提案手法は,従来のSNNと比較して,推定計算の複雑さを20ドル削減し,モータ実行の分類作業において同等の精度を達成した。
本研究は,低レイテンシおよび低消費電力リアルタイムアプリケーションに適したグラフスパイクネットワークの解釈および効率的なトレーニングのためのフレームワークを提供する。
関連論文リスト
- Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
スパイキングニューラルネットワーク(SNN)は、ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
本研究は,グラフ表現学習の強化におけるスパイキングダイナミクスの特質とメリットについて考察する。
スパイキングダイナミクスを取り入れたスパイクに基づくグラフニューラルネットワークモデルを提案し,新しい時空間特徴正規化(STFN)技術により強化した。
論文 参考訳(メタデータ) (2024-07-30T02:53:26Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
本稿では,効率的なグラフ表現学習のためのSNNに基づく深層生成手法,すなわちSpking Variational Graph Auto-Encoders (S-VGAE)を提案する。
我々は,複数のベンチマークグラフデータセット上でリンク予測実験を行い,この結果から,グラフ表現学習における他のANNやSNNに匹敵する性能で,より少ないエネルギーを消費することを示した。
論文 参考訳(メタデータ) (2022-10-24T12:54:41Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。