論文の概要: CARE: Co-Attention Network for Joint Entity and Relation Extraction
- arxiv url: http://arxiv.org/abs/2308.12531v2
- Date: Wed, 27 Mar 2024 13:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 23:02:36.347157
- Title: CARE: Co-Attention Network for Joint Entity and Relation Extraction
- Title(参考訳): CARE: 共同エンティティと関係抽出のためのコアテンションネットワーク
- Authors: Wenjun Kong, Yamei Xia,
- Abstract要約: 本稿では,共同エンティティと関係抽出のためのコ・アテンション・ネットワークを提案する。
提案手法では,サブタスク毎に異なる表現を学習するための並列符号化方式を採用する。
このアプローチのコアとなるのは,2つのサブタスク間の双方向のインタラクションをキャプチャするコアテンションモジュールです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint entity and relation extraction is the fundamental task of information extraction, consisting of two subtasks: named entity recognition and relation extraction. However, most existing joint extraction methods suffer from issues of feature confusion or inadequate interaction between the two subtasks. Addressing these challenges, in this work, we propose a Co-Attention network for joint entity and Relation Extraction (CARE). Our approach includes adopting a parallel encoding strategy to learn separate representations for each subtask, aiming to avoid feature overlap or confusion. At the core of our approach is the co-attention module that captures two-way interaction between the two subtasks, allowing the model to leverage entity information for relation prediction and vice versa, thus promoting mutual enhancement. Through extensive experiments on three benchmark datasets for joint entity and relation extraction (NYT, WebNLG, and SciERC), we demonstrate that our proposed model outperforms existing baseline models. Our code will be available at https://github.com/kwj0x7f/CARE.
- Abstract(参考訳): 統合エンティティと関係抽出は、名前付きエンティティ認識と関係抽出という2つのサブタスクからなる情報抽出の基本的なタスクである。
しかし,既存の関節抽出法の多くは,2つのサブタスク間の特徴的混乱や不適切な相互作用の問題に悩まされている。
本稿では,これらの課題に対処するため,共同エンティティと関係抽出(CARE)のためのコ・アテンション・ネットワークを提案する。
提案手法では,各サブタスク毎に異なる表現を学習するための並列符号化方式を採用し,機能の重複や混乱を回避することを目的としている。
提案手法のコアとなるのは,2つのサブタスク間の双方向の相互作用を捕捉するコアテンションモジュールである。
結合エンティティと関係抽出のための3つのベンチマークデータセット(NYT,WebNLG,SciERC)の広範な実験を通じて,提案モデルが既存のベースラインモデルより優れていることを示す。
私たちのコードはhttps://github.com/kwj0x7f/CAREで公開されます。
関連論文リスト
- A Decoupling and Aggregating Framework for Joint Extraction of Entities and Relations [7.911978021993282]
本稿では,エンティティと関係を共同で抽出する新しいモデルを提案する。
本稿では,特徴符号化処理を主題の符号化,オブジェクトの符号化,関係の符号化という3つの部分に分割することを提案する。
我々のモデルは、過去の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2024-05-14T04:27:16Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Similarity-based Memory Enhanced Joint Entity and Relation Extraction [3.9659135716762894]
文書レベルの共同エンティティと関係抽出は難解な情報抽出問題である。
タスク間の双方向メモリのような依存性を持つマルチタスク学習フレームワークを提案する。
実験により,提案手法が既存手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-14T12:26:56Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
本稿では,統合エンティティ関係抽出のための新しい手法であるHIOREを提案する。
重要な洞察は、単語ペア間の複雑な関連を活用することである。
実験の結果,HIOREは従来最高の統一モデルよりも1.11.8 F1ポイント向上した。
論文 参考訳(メタデータ) (2023-05-07T14:57:42Z) - Towards Effective Multi-Task Interaction for Entity-Relation Extraction:
A Unified Framework with Selection Recurrent Network [4.477310325275069]
エンティティ関係抽出は、名前付きエンティティ認識(NER)と関係抽出(RE)を共同で解くことを目的とする
最近のアプローチでは、パイプライン方式で一方向のシーケンシャルな情報伝達を使用するか、共有エンコーダと二方向の暗黙的な相互作用を使用する。
本稿では,シーケンシャルな情報伝達と暗黙的な相互作用の両方の利点を組み合わせた,新規で統一されたカスケードフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-15T09:54:33Z) - An End-to-end Model for Entity-level Relation Extraction using
Multi-instance Learning [2.111790330664657]
本稿では,文書からのエンティティレベルの関係抽出のための共同モデルを提案する。
DocREDデータセットから最先端関係抽出結果を得る。
実験結果から,共同学習はタスク固有の学習と同等であるが,共有パラメータや学習手順によりより効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-02-11T12:49:39Z) - A Trigger-Sense Memory Flow Framework for Joint Entity and Relation
Extraction [5.059120569845976]
結合エンティティと関係抽出のためのTriMF(Trigger-Sense Memory Flow Framework)を提案する。
エンティティ認識と関係抽出タスクで学習したカテゴリ表現を記憶するためのメモリモジュールを構築する。
また,エンティティ認識と関係抽出の双方向インタラクションを強化するために,多レベルメモリフロー注目機構を設計する。
論文 参考訳(メタデータ) (2021-01-25T16:24:04Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD)は、2つ以上の関連する画像を含む所定のクエリグループに繰り返し現れる健全なオブジェクトを発見することを目的としている。
課題の1つは、画像間の関係をモデリングし、活用することによって、コ・サリヤ・キューを効果的にキャプチャする方法である。
我々は,複数画像から有能かつ反復的な視覚パターンを捉えるために,エンドツーエンドの協調集約配信ネットワーク(CoADNet)を提案する。
論文 参考訳(メタデータ) (2020-11-10T04:28:11Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - A Co-Interactive Transformer for Joint Slot Filling and Intent Detection [61.109486326954205]
音声言語理解システム(SLU)を構築する上では,インテント検出とスロットフィリングが主要な2つのタスクである。
以前の研究では、2つのタスクを個別にモデル化するか、インテントからスロットへの単一の情報フローのみを考慮していた。
本稿では,2つのタスク間の相互影響を同時に検討するコ・インターアクティブ・トランスフォーマーを提案する。
論文 参考訳(メタデータ) (2020-10-08T10:16:52Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。